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Abstract

Precautionary saving is a key driver of wealth inequality within models of the
Bewley-Huggett-Aiyagari canon. However, models with savings rates calibrated
solely to idiosyncratic income risk find it difficult to replicate the vast wealth
inequality empirically observed in the United States. This paper looks at a potential
source of increased precautionary savings - idiosyncratic medical expenses shocks.
This paper: i. establishes an identification procedure for medical expenditure
shocks across the entire life cycle, ii. finds that idiosyncratic shocks are very highly
persistent, iii. establishes the extent to which these shocks contribute to wealth
inequality through the effect on savings behaviour.

Risk is a pervasive feature over the life cycle. Understanding the quantity and type
of risk agents face is an important means to understanding their savings behaviour
and therefore the shape of the wealth distribution that this induces. Agents also face
deterministic reasons for saving, pertinently the sudden income drop that is faced upon
retirement. This paper presents a new perspective on an important source of risk
throughout the entire life cycle, out of pocketmedical expenditure risk, and its importance
in forming the vast wealth inequality seen in the United States.

The first aim of this paper is to establish a method of estimating a stochastic process
of medical expense cost shocks. Firstly, out of pocket costs are decomposed, utilising
a similar procedure as performed by Storesletten, Telmer et al. (2004) and Deaton
and Paxson (1994), and an informal graphical analysis is undertaken. These results
suggest that the shocks are highly persistent over the life cycle, almost reaching the
unit root. This implies that the variance of medical cost shocks increases linearly over
time, and is highest nearer the end of the life cycle - an important feature in generating
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substantial precautionary savings. These results are then more formally established
within a minimum distance estimation framework, targeting cross sectional moments.

Secondly, the estimated process is placed within an eighty period heterogeneous
agent life cycle model, with lifespan risk, in order to measure the consequences to
wealth inequality. Agents are hit with idiosyncratic income and health shocks, which
are modelled as mandatory shifts in the budget constraint of an agent. This model sug-
gests that medical expenditure shocks are important to understanding savings behaviour,
increasing the Gini coefficient over a benchmark model by 20 percentage points to 0.79
and closely matching the empirically observed distribution of wealth.

Medical costs form a large proportion of expenditure in the elderly of the United
States. Without labour income, agents need a buffer stock of savings to smooth consump-
tion across potential expenditure shocks. Importantly, even if large costs are never fully
realised over the life cycle, simply the knowledge that these costs can occur in the future
can influence saving behaviour at every point in the agents’ life cycle. As the variance of
these shocks is increasing over time, through the highly persistent process, agents will be
inclined to retain savings even when old in order to maintain smooth consumption: the
precautionary motive is strong. Further, this model also explores wealth inequality from
the other perspective: why agents don’t save. With medical expenditure throughout the
life cycle potentially shifting an agent’s budget constraint to the left, agents are never in
a position to fully take up the life cycle and precautionary saving they wish to.

Previouswork has been performed towards quantifyingmedical expenditure, however
much has focused on the retirement phase of the life cycle, most pertinently by De Nardi,
French et al. (2010), French and Jones (2004) and De Nardi, Fella et al. (2016). Less
work has been done on the process of medical expenditure over the entire life cycle of an
agent. Hubbard, Skinner et al. (1995) look across the life cycle, but medical expenditure
is just one part of extensive model of social security, and further use cross sectional data
from just one survey year. Feenberg and Skinner (1992) perform a wide analysis, though
due to an absence of good data sources, a complex identification procedure assessing
households who have deductedmedical expenses from their tax returns is used. Kotlikoff
(1986) suggests the importance of medical costs in amassing savings, and identifies a
need for including medical cost shocks within a full stochastic model of income and
lifetime risk.

This paper will use a pool of contemporary panel data from the MEPS and HRS
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surveys to explore the medical cost process across the entire life cycle, from the ages
of 21 to 100, and will explicitly look at the its connection to wealth inequality within a
wider calibrated model of risk, from the perspective of precautionary savings.

The paper is structured as follows. Section 2 provides context to the heterogeneous
agent structures used in modelling idiosyncratic risk, and their success in accounting for
wealth inequality. Section 3 outlines the data sets used within the estimation process,
and how their characteristics provide motivation for the following discussion. Section 4
develops a two stage identification strategy for estimating a process of medical expendi-
ture shocks, which is found to be highly persistent. Section 5 places this process within
a structural life cycle model of idiosyncratic income and health cost risk, and finds that
empirically grounded expenditure shocks can account for a marked increase in wealth
inequality.

1 Motivation

Inequality within advanced economies is a pertinent issue in modern economic and
political discourse, with renewed public interest following the publication of Piketty’s
(2014) Capital in the Twenty-First Century. Empirically both income and wealth are
highly skewed towards the right of the distribution, concentrated within a small fraction
of society - the richest 10% hold over two-thirds of the total wealth of the United States.
(Cagetti and De Nardi, 2008). Wealth inequality is not fully described by attaching
its mechanism solely to labour income, as placed within the canonical Aiyagari (1994)
model. There is a rich literature, summarised in De Nardi (2015), with a wide variety of
mechanisms, which attempt to match more closely the empirically observed distribution.

Krusell and Smith (1998) suggest that introducing heterogeneity in patience should
allow the wealth distribution to concentrate within an incomplete markets economy. The
mechanism of action includes idiosyncratic income risk, but further places a weight of
preference upon savings rate: agents who are less asset rich have chosen to be poorer.

Castañeda, Díaz-Giménez et al. (2003) develop a highly specified model with a
number of components, which aims to match a number of empirical moments of the
wealth distribution of the United States. Most pertinently, the model calibrates an
earnings process with two interesting features: i) extremely wide variance of income
levels, ii) relatively high probability of leaving the highest income level (equivalently, a
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low proportion of agents residing within the top income levels). De Nardi, Fella et al.
(2016) find that there is not a substantial amount of empirical evidence for extremely large
earnings risk when excluding an important subclass of economic agent: the entrepreneur.
Quadrini (1999) has further established the importance of entrepreneurship in explaining
the savings behaviours of the very wealthy. Cagetti and De Nardi (2006) model the
behaviour of entrepreneurs explicitly - in a move away from completely precautionary
motives.

De Nardi (2004) looks at intergenerational wealth transmission through two mecha-
nisms: accidental bequests (solely bt) or voluntary bequests which are embedded directly
into the utility function (providing a ‘warm glow’). Accidental bequests are simply redis-
tributed wealth leftover from an uncertain life length, whilst voluntary bequests provide
motivation for old aged individuals to hold savings until the point of death. Empirically,
Gale and Scholz (1994) have found that bequests appear to form up to 60% of wealth
accumulation.

The literature on savings mechanisms allows one to go some way to matching
the empirically observed wealth distributions. The precautionary savings motive in
particular is clearly a powerful incentive for wealth accumulation across the life cycle.
The two best performing models surveyed in this paper modified the savings behaviour
directly of the very asset rich in order to match the thick right Pareto tail that is seen
in the empirical wealth distribution. This paper aims to take a view from the entire
life cycle and cross section of agents in order to generate organic precautionary savings,
through idiosyncratic medical cost shocks.

Since Modigliani’s (1980) life cycle model of consumption, it had been understood
that a household will amass savings until they retire, and then spend the savings they
have for the rest of the period they to remain alive, in a manner which matches their
discounting rate and expected life span. However, empirical studies have shown that
the elderly often save, at least do not dissave (Danziger, Van Der Gaag et al., 1982),
or simply continue to hold assets at a rate higher than suggested by the basic life cycle
model (Hurd, 1989) - uncertain medical expenditure can go some way to explaining this
(Palumbo, 1999).

Medical expenses, as this paper understands them, effectively shift an agent’s budget
constraint, as opposed to a limit on earnings or a utility shock. Uncertainty about the
magnitude and timing of these shocks encourage individuals to save in anticipation of
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offsetting potential large future costs. Importantly, these shocks can occur at any point
over the life cycle, and empirically appear to reach their peak (in levels) in old age
(De Nardi, French et al., 2010).

The analysis that follows is built upon the initial work of Palumbo (1999), Kotlikoff
(1986) and Hubbard, Skinner et al. (1995). Kotlikoff (1986) looks at the different
financing methods of medical expenditure, and finds that these are likely to substantially
drive aggregate savings. Hubbard, Skinner et al. (1995) have looked at the impact of
social security on savings, explicitly modelling a lifetime health care risk shock within
a life cycle mode. Their simulations show a strong role for precautionary savings due to
medical uncertainty. Palumbo (1999) develops a dynamic structural model, and reaches
a similar conclusion. Ozkan (2011) and De Nardi, French et al. (2010) have looked at
medical expenditure by income quintle over the life cycle, but have not looked at the
entire distribution of wealth. Both assert that from retirement, richer agents pay higher
medical costs that poorer agents, and estimate very high medical expenditure for the
wealthy when old.

This paper will look at a rich set of recent panel data, using a new estimation
technique, in order to establish a stochastic process of medical cost shocks. Further,
the literature is yet to explicitly study the impact on wealth inequality across the cross
section, which this paper aims to analyse within a structural life cycle model.

2 Data

2.1 Overview

This paper utilises data from the Medical Expenditure Panel Survey (MEPS). MEPS
is a US government funded two-year, large scale panel survey of individuals and their
families. The data collected includes accurate and specific information on total and
out of pocket medical expenditure, health care use, and insurance coverage. Further, a
wide range of demographic detail is available, including socio-economic characteristics,
labour information and income breakdowns.

MEPShas two components: theHouseholdComponent (HC), collecting data directly
from individuals and the Insurance Component (IC), which collects data from sampled
private and public sector employers on details of their health insurance coverage. This
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paper will solely use data from the Household Component.
The MEPS Survey begun in 1996, and surveys around 13,000 nationally representa-

tive households in an overlapping panel design. Each year, a new panel of households
is selected, whilst one of the previous panels drops out. This leads to around 33,000
individuals within the survey in any given year, with an attrition rate of approximately
5%. Figure 1 demonstrates the structure of MEPS graphically.

This paper also uses data from the Health and Retirement Study (HRS) dataset (Uni-
versity of Michigan, 2016). The HRS is a longitudinal panel survey of older American
individuals aged 51 or over and their households. Its main goal is to provide high qual-
ity panel data that enables research in into retirement, saving, expenditure, health and
economic well-being. Specifically the RANDHRS data set is used which pools together
multiple panels of the HRS set, merging potentially heterogeneous variable coding into
one coherent file (RAND Center for the Study of Aging, 2016).

Figure 1: MEPS panel design
(Agency for Healthcare Research and Quality, 2015)

2.2 Sample

This paper utilises a pooled data set of thirteen MEPS years, from 2002 until 2014
inclusive, providing 454,748 data points across 257,942 individuals. The survey provides
a wide range of medical expenditure sources, including: Medicaid, Medicare, private
insurance, other public insurance (i.e veterans care, TRICARE etc.), drug costs, and
out of pocket expenditure. For the analysis that follows, the sample has been selected
according to the following restrictions:
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• Individuals aged between 21 and 84 inclusive.

– MEPS top codes individuals to the age of 84. Therefore, mean and other
moment information regarding ages at the top code of 85 will be inaccurate.

– Individuals below the age of 21 have been dropped for two reasons. Firstly,
there is high variability in the expenditures of younger agents due to a
high percentage of zero codes. Further, in line with the literature, savings
behaviour does not commence until the age that the individual joins the
labour market.

• The MEPS survey provides information across three waves each year, as outlined
in the figure above. The selected sample contains only end of calendar year values
for comparison across years.

• Medical expenditure, which is nominal within the datasets, has been inflated to
2014 USD ($). Following Dunn, Grosse et al. (2016), total expenditure has
deflated with the GDP deflator, and out of pocket expenditure has been deflated
with the Consumer Prices Index.

• Following French and Jones (2004), medical expenditure has been bottom coded
to $250, which allows for a log transformation when medical expenditure is zero.
This transformation is not completely benign, and may have an economically
relevant impact. However, when mean levels are used this transformation is
ignored.

The HRS sample has also been cleaned, pooling data from the same years as the
MEPS survey, 2002 until 2014 inclusive. This provides 122,564 data points across
27,648 individuals - an average of 4.4 years within each panel for each agent. Similar
transformations have been to the HRS data as the MEPS data. This data is not directly
used in the estimations, but is used as a robustness check in section 3.2.1 and to provide
context in the following section.

2.3 Core facts

To understand the context behindmedical cost risk, it is initially useful to look at the cross
sectional detail of the sample in the aggregate. To enable this, summary statistics have
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been constructed, utilising the MEPS survey weights provided to create representative
sample moments. Across 5-year cohorts banded by age at the time of the panel survey,
table B.1 summarises all of the MEPS sample data points.

Figure 2: Mean out of pocket medical expenditure, by age

As shown in figure 2, mean out of pocket medical expenditure is clearly strongly
increasing over the life cycle. Starting at around $350 dollars, expenditure rises four fold
over a 60 year period to between $1,400-1,800. Total expenditure is a less important
metric, as it will not directly hit the budget constraint, but is a useful indication of the
extent of insurance in the health care market and the overall health risk at a given age.
Total medical expenditure, figure C.1, rises at a steeper gradient than out of pocket
expenditure: it starts around $1,900 and rises to over $10,000 at the upper age band.

Importantly, the standard error over time for out of pocket expenditure appears to
become proportionally larger over the life cycle. This will be verified later on in this
paper, but it looks as if it is empirically true. This does not look to be an effect of the
band’s population size, as similar populations are within the very lowest and very highest
age cohorts.

The figures discussed above suggest that an increasing proportion of expenditure is
covered by medical insurance as an agent ages: figure C.2 shows that this is the case,
with around 80% of expenses when young, increasing to around 87% when old, paid
by an insurance source. This finding is echoed in figure C.5, which shows that the
proportion of uninsured agents decreases over the life cycle. In the retirement stage of
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the life cycle, this is strongly influenced by the uptake of Medicare, which nearly all
individuals over the age of 65 are eligible for. Figure C.4 displays this clearly, as around
5% appear publicly insured prior to the age of 65, rising steeply to 13% by the end of
the life cycle.

As the MEPS dataset can only provide medical expenditure data up to the age of 85,
Figure C.3 shows expenditure from the HRS dataset. As the sample sizes are vastly more
limited amongst the very old (93+), there is clearly far more inherent variability in the
sample. However, from 85-95, medical expenditures appear to increase at the same pace.
De Nardi, French et al. (2016) have taken a comprehensive look at the HRS data set, and
have found that total medical expenditure increases fourfold over the retirement phase.
They also find that total medical expenditure is highly concentrated towards the end of
the life cycle. As Hurd, Rohwedder et al. (2009) notes, mean levels of out of pocket
spending are inherently higher HRS than MEPS due to some amount of measurement
error at the points where expenditure is extremely concentrated. Agents in the top 5
percent of the distribution account for 35% of all medical spending, and total spending is
correlated with income. However, the proportion of out of pocket expenditure is found
to be near constant across the income distribution. The impact of end of life spending
of the very old on the estimation process is discussed in section 3.2.1 of this paper.

Finally, it is important to assess the potential real impact of medical expenditure on
the budget constraint. Figure C.6 shows combined earnings and pension income over
the life-cycle, not including capital income. The profile is hump shaped, as studied by
the wide literature on the income process, showing clearly the career development and
the retirement phases of the life cycle. Figure C.7 displays out of pocket expenditure as
a proportion of combined income. Expenditure steeply rises proportionally after the age
of 60 - this is the dual effect of losing earnings income and also requiring high medical
expenditure as one ages.

Saving for retirement is clearly an extremely important economic mechanism -
looking at nominal medical expenditure puts this need in sharp focus - but to now
assess the precautionary motives, as opposed to the deterministic, the variation of these
expenditures is the important moment. The following section turns to a method of
identifying this risk.
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3 A parametric model of medical cost shocks

Two features of the data above seem imperative: medical expenditure increases sharply
with age, but also variance of medical expenditure appears to increase with age - i.e
there is medical cost ’inequality’. This profile of expenditure lends itself to a strand
of identification methods used in the literature on the income process, beginning with
Deaton and Paxson (1994) and developed by Storesletten, Telmer et al. (2004).

Intuitively, the life cycle of our medical costs in a developed nation (given the
institutional structure and financial system available) can be seen by a system of persistent
idiosyncratic shocks - a system determined by our age, our genetics, and some amount
of ’luck’ over our lifetime. Each individual takes on a fixed effect of inclination towards
bad medical outcomes, leading to higher medical costs - these are fixed at birth and stay
with the individual throughout their life. Secondly, idiosyncratic shocks to health costs
are received at each period of the life cycle, some permanent, and some transitory. The
permanent shocks persist at some rate across the rest of the agent’s life cycle.

The above describes an error components process model of medical expenditure cost
shocks across the life cycle. This section identifies this process through two methods:
an informal graphical analysis, which provides valuable insight into the process over the
cross section, followed by a formal GMM minimum distance estimation.

3.1 Stage I: Variance decomposition

To understand the risk of medical expenditure, the unexplained component needs to be
observed to initiate the analysis. The first stage of the estimation procedure extracts this:

mh
it = xh

itβ +

T−1∑
t=1

Yt + π
h
it (1)

mh
it describes the logarithm of total out of pocket medical expenditure, for individual

i, of age h, in year t. xh
it is a vector of explanatory demographic variables. Yt are dummies

for each year of the panel. Years run from 2002 until 2014, and therefore t runs from 1 to
13. As discussed in section 2.2, the age of the sample runs from 21 to 80, and therefore
h runs from 1 to 60.

This paper will use Ordinary Least Squares to extract the residual, πh
it . There is
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strong precedent for this in the literature: see, for example French and Jones (2004).
Health care costs are skewed to the right of the distribution - following the bottom-coding
performed on the variables a log transformation is performed on medical costs to address
this. If zero values were instead dropped, as in Hurd (1989), a substantial amount of
data would be lost. Manning and Mullahy (2001) suggests that performing OLS upon
log transformed variables works well with heavy tailed distributions. However, the
coefficients will not be fully reliable as cost measures. This analysis will not directly
use the coefficients in the analysis, and one is only interested in the residuals of this
regression - however, the coefficients are useful for context. The usual OLS assumptions
apply, including exogeniety: E(πh

it) = 0.1 This implies the following:

Var(πh
it) = E(π

h
it)

2 = σ2
ht (2)

Therefore, estimated variance equates to the following, where m̂h
it is the OLS projec-

tion of the model in equation 1.

σ̂2
ht = E(π̂

h
it)

2 (3)

π̂h
it = mh

it − m̂h
it

Table 1 shows the results of the OLS regression under two specifications, (1) includ-
ing full demographic details, (2) just including a quadratic function of age as dependent
variables. The regression shows what was seen graphically in section 2.1, (log) out of
pocket medical expenditure is an increasing function of age. The remaining signs of the
dependent variable coefficients appear to affect medical expenditure as expected. The
negative coefficient on the male dummy is likely to be longevity bias - women live longer
than men in general and are therefore more likely to hit higher medical costs. Unlike
the findings of French and Jones (2004) for retired agents, log income negatively affects
medical expenditure, as would be expected.

1French and Jones (2004) argue, however, that insurance coverage is not not completely exogenous:
agents could purchase insurance in response to a medical cost shock, or lose their workplace insurance
following catastrophic illness.
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(1) (2)
Variable Coefficient Robust S.E Coefficient Robust S.E
Age .00442∗∗∗ (.00058) .01073∗∗∗ (.00057)
Age2 .00014∗∗∗ (6.20e-06) .000071∗∗∗ (6.01e-06)
Male -.1768∗∗∗ (.00310)
Married .0138∗∗∗ (.00327)
Log Income -.0027∗∗∗ (.00036)
Private Ins. -.2762∗∗∗ (.00466)
Public Ins. -.1914∗∗∗ (.00382)
Constant 5.826∗∗∗ (.01354) 5.438∗∗∗ (.01217)

Year dummies omitted
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1: OLS regression for Stage I estimation, with robust standard errors

3.2 Stage IIa: Graphical analysis

The residuals (π̂h
it) from the Stage I estimation are now used to estimate a medical

expenditure process. The identification of this process is driven by the difference in
cross sectional variance between ages. This section will demonstrate graphically that
the cross sectional variance of medical expenses increases over the lifecycle of the agent.

Firstly, it is important to disentangle the age effects on medical costs from cohort
effects. Cohort effects encompass some part of cost variation - the variability of the
institutional environment and the effects of public insurance expenditure. The amount
of public expenditure on healthcare has a direct effect to the individual costs, but also a
potential indirect effect through prices.

Following Deaton and Paxson’s (1994) and Storesletten, Telmer et al.’s (2004)
technique for decomposing the income process, each individual is assigned a cohort by
the year of their birth, denoted c. σh

it denotes the residual of the stage I decomposition
of the logarithm of out of pocket medical expenditure, by individual i of age h at time t.
This is now decomposed into cohort effects, ah, and age effects, bh.

σ̂c
ih = ac + bh + eih (4)

As explained above, the analysis that follows will focus on the age effects bh. The
cohort effects do not affect the analysis but clearly play a role in producing variability.
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Now an error components model, similar to French and Jones (2004), can be placed
upon the residuals. More specifically, following Storesletten, Telmer et al. (2004), the
variation in costs can be seen as arising from two sources:

σ̂c
ih = xc + uih (5)

where uih is a specific shock to an individual of age h, while xc is a shock specfic
to the cohort. We can now place a structure on the process that this individual, age
dependent shock takes throughout the lifecycle of an agent:

uih = αi + zih + εih (6)

αi is an individual fixed effect which is realised at the start of the lifecycle and
retained throughout it. zih and εih are age and individual specific shocks, realized at each
point of the life cycle. εih is a transitory medical cost shock2, whereas zih is a permanent
shock, which can be further decomposed into an autoregressive component ρzi,h−1 and
the innovation ηih:

zih = ρzi,h−1 + ηih (7)

It is assumed that all shocks within the system are orthogonal and i.i.d., with mean
0.

αi ∼ N(0, σ2
α) (8)

εih ∼ N(0, σ2
ε )

ηih ∼ N(0, σ2
η )

zi0 = 0

Therefore, leading from the assumptions in equation 8, and the error components
model in equation 6, at each age h, the age effect from the above decomposition bh has

2εih , as well as including transitory shocks, embeds i.i.d measurement error.
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a cross-sectional variance of the following:

bh = Var(uih) = σ
2
α + σ

2
η

h−1∑
j=0

ρ2 j + σ2
ε (9)

Equation 9 is proved in Appendix D, and simply follows from the distributional
assumptions placed on error components. Importantly, the summation is not simplified,
due to the presumed value of the auto-regressive parameter being close to unity.

The equation forms the heart of the formal identification strategy that follows below,
and provide the majority of the moment conditions in the formal estimation. However,
it is useful to first look look at a graphical analysis of the variances the decomposition
above implies, and how the identification strategy exploits the features of the cross
sectional variance of expenditure.

The important parameters, bh, which are the cross sectional variances of the ex-
penditure shock at age h, can be recovered by simple OLS (without a constant) on the
residuals πih. However, the coefficients must then be scaled to match an unconditional
variance within the distribution, so that comparisons can be made cross-sectionally. Fol-
lowing Deaton and Paxson (1994), the coefficients are scaled to b∗h through the choice
of a reference age - this analysis will use 42. b∗h exactly identifies the cross sectional
variance at age h. The following system of linear equations can then be solved to obtain
the relevant parameters in the error components system, following Storesletten, Telmer
et al. (2004):

E[(πc
ih)

2 |h] − ā − bh = 0,H moments (10)

E[(πc
ih)

2 |c] − b̄ − ac = 0,C moments

bh + (m − b42) − b∗h = 0

E[(πc
ih)

2 |h = 42] − m = 0

where H is the number of distinct ages present in the sample, and C is the number of
distinct ages in the sample. Therefore, H + C + 2 equations in total are to be solved to
obtain b∗h - solving the system of equations obtains the results in Figure 3.

Figure 3 shows clearly that the cross sectional variance is increasing over the life
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Figure 3: Cross-sectional variance

cycle. One can loosely identify important parameters of the error components model
from the properties of the line - Storesletten, Telmer et al. (2004) describe this algorithm
as impressionistic. The first derivative roughly identifies the variance of the permanent
shocks σ2

η , whilst the second derivative identifies the persistence parameter ρ. Very
roughly, σα + ση can be identified as being around the intercept of the data. It is clear
that the line is roughly straight, implying a second derivative of 1 - medical cost shocks
are highly persistent. The gradient of the line is approximately 0.01 - η ∼ N(0,0.01).
The intercept of the line is roughly 0.35 (≈

√
0.59).

To more fully identify the parameters, we can place equation 9 into the system.

b∗h = Var(πh
it) = σ

2
α + σ

2
η

h−1∑
j=0

ρ2 j + σ2
ε ,H moments (11)

This now sets 2H + C + 2 equations in total can now be solved to estimate the four
parameters σα, σε , ση and ρ. This initial analysis will exactly identify the system using
three different ages and corresponding bh points. 3 The subsequent section will place
these moment conditions inside a minimum distance estimator to ensure full robustness.
As σ2

ε + σ
2
α is simply a linear combination, this procedure will not be able to identify

3The ages used in the analysis above are 30, 45 and 55 - only three are needed as σα and σε cannot
be seperately identified. The analysis has been tested as robust to using a range of different ages, and is
confirmed with the GMM procedure below.
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them separately.

Analysis σα + σε ση ρ

Rough graphical estimates 0.59 0.1 1
System of non-linear equations 0.515 0.128 0.996

Table 2: Stage IIa estimation

This exactly identified system confirms the results of the graphical analysis - medical
costs are extremely persistent - almost permanent. The transitory shock is slightly smaller
than the fixed effects, but over the life cycle these effects sum to become substantial,
through their high persistence.

The analysis can also be tested for robustness across demographic variables. Ap-
pendix E plots the cross sectional variances across gender and marital status. Females
appear to have a higher cross sectional variance than males up, with the difference de-
clining until the point of Medicare eligibility at age 65 where the two converge. This
suggests that women are likely to be less well insured against these shocks than their
male counterparts. Across marital status, there appears to be limited difference across
the life cycle, and the coefficients confirm the aggregate levels above.

3.2.1 Limitations of the MEPS dataset: a robustness check

Before continuing with the formal analysis, it is worth discussing the limitations of the
MEPS dataset which are pertinent to this paper. Firstly, MEPS top-codes all ages to
85. This implies an inaccuracy in the moment information of ages at the top code, and
further limits our potential for analysis of individuals aged 84 or younger. Secondly, the
dataset is limited to non-institutionalised individuals. De Nardi, French et al. (2016)
have shown that a large portion of healthcare costs in the elderly (aged 65 and older) is
driven by institutional costs (see figure C.8), and this proportion increases as individuals
age. It is clearly important to address these issues to ensure accurate estimation for
medical costs moments in the very old aged. This section will outline the methods used
in this paper to tackle this.

The Health and Retirement Study (HRS) dataset is a rich and complex longitudinal
panel survey of older individuals and households in the United States. Positively, it
includes medical expenditure related to long term care. Further there is no top coding in
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age; with a low attrition rate (Sonnega, Faul et al., 2014) individuals are often surveyed
until death.

However, the HRS panel population is only surveyed every two years. Reconciling
this two-yearly data with the yearly data produced by MEPS specifically is difficult.
MEPS, as discussed, only provides a one-year lag, which HRS excludes completely.
Therefore, the moment conditions that are used in the formal analysis in a merged data
set would be mutually exclusive across the two data sources. One could simply average
across the two years to create two one year figures but this would remove the variance
differentials by which the estimation procedure is driven. French and Jones (2004)
produced a methodology for producing estimated yearly process parameter values based
on two year expenditure data, but producing process estimations for the entire life cycle
using simulated data from these processes would place an inherent distribution upon the
data and bias further analysis over the entire cross section.

Figure 4: HRS (grey) and MEPS (black) cross sectional variances

The approach in this paper is to combine the two datasets in a limited manner,
producing the parametric estimates through the residual variances of the more limited
MEPS dataset, but using a merged dataset to estimate overall level information utilised
in the model, which is less important for savings reasons due to being deterministic.
Cross sectional moments of the two datasets suggest this approach is reasonable.

Figure 4 shows the cross sectional variance of the residuals of a regression similar
to the one performed above, MEPS variances in black, whilst the HRS variances are
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in grey. Note that the variances are not scaled as above, but the relative sizes remain
important.

The HRS variances are slightly higher thanMEPS set, which is likely to be attributed
both to differences in institutional status and also sample size. However, disregarding
the final years of life whose variance is completely driven by the extremely small sample
size (N ≈ 10), the variances appear to increase at a similar rate across the entire life
cycle. This vindicates the error components model estimated above, and is clearly well
matched by a highly persistent process.

3.3 Stage IIb: Formal analysis

The analysis above appears robust to graphical, informal parametric treatmentswith amix
of identifying equations, across demographic characteristics, and to further comparison
to different data sets. The formal analysis within a GMM framework will confirm these
findings fully, provide standard errors, and will be able to fully identify the parameters
within the error components model.

Utilising a GMM methodology also allows the possibility of widening the informa-
tion set included in the analysis - to more accurately identify the persistence parameter
the estimation will now include a set of autocorrelation moment conditions, given the
two years of data available for most individuals within the MEPS panel.

The autocovariance of the residual of medical expenditure between ages h and h − 1
for individual i can be shown, in a similar method to the proof of equation 9, c.f.
Sopchokchai (2015), to equal the following:

E(πh
itπ

h−1
i,t−1) = σ

2
α + ρ

h−1∑
j=1

ρ2( j−1)σ2
η (12)

Equations 9 and 12 underlie the GMM estimation used in this section. The two sets
entail 2H - 1 total moment conditions to use within the system.

The MEPS dataset is unbalanced, and therefore to obtain a full estimation this
analysis will follow the techniques used for income and consumption process estimation
of Blundell, Pistaferri et al. (2008). In summary, minimum distance estimation will
occur across a empirical weighted variance-covariance matrix against the variance and
autocovariance moment conditions above in equations 9 and 12.
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The empirical variance-covariance matrix is calculated in the following manner. For
every individual within the sample, i, define di as an H x 1 vector, with each element
an indicator, dih ∈ {0,1} as to whether the agent is present in the sample at age h.
Conformably with di, define mi as a H x 1 vector of residuals from the Stage I estimation
of individual i at age h.4

The VCV matrix (C), of dimensions H x H, is therefore defined as the following (an
element wise division):

m ≡ vech
{∑I

i=1 mim′i∑I
i=1 did′i

}
(13)

Each element of the vector m contains the cross sectional permuted co-variances of
the medical cost residual, cov(mh,mh+s) at age h and h + s.

Estimation can subsequently be performed following the techniques of Chamberlain
(1984), aminimumdistance estimation (MDE)whichminimizes the delta between across
the empirical VCV matrix and the modelled covariance matrix. The MDE estimator
solves the following problem:

min
Θ
[m − f (θ)]′ Ω [m − f (θ)] (14)

where f (θ) is a vector conforming to the vectorised VCVmatrixm, with dimensions
H(H+1)/2, 1; Ω is a weighting matrix, and Θ is a set of parameters - in this case our
error component parameters σα, σε , ση and ρ.

Regardless of the choice of weighting matrix, the estimator is consistent under loose
regularity conditions (for a proof, see (Chamberlain, 1984)). However the estimator may
be made asymptotically more efficient by using a suitable weighting matrix. A potential
asymptotically efficient weightingmatrix would be the inverse of the asymptotic variance
V−1 where

V =
∑I

i=1(m −mi)(m −mi)
′

ss′

and where s = vech{
∑I

i=1 did′i }. However, as discussed in Altonji and Segal (1996)
this weighting matrix has substantial bias in small samples due to the correlation in
errors between m and V . A majority of the literature on the estimation of the income

4Missing residuals are marked at 0. As individuals are followed for a maximum of two years, the
matrix will be extremely sparse, with a minimum of A-2 zero entries.
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process use an equally weighted minimum distance estimator, Ω = I, which this paper
will follow. Standard errors will be bootstrapped.5

3.3.1 Estimation results

Table 3 details the results of the estimation. What is immediately clear is that the medical
shocks are certainly near permanent, the permanent innovation is slightly decreased, and
the sum of the transitory and fixed effects are slightly increased. Overall, the parameters
appear robust to the inclusion of autocovariance moments, and the overidentification.
The fixed effects are quickly dominated by the build up of permanent innovations over
the life cycle - a potential interpretation of this is once a medical problem which requires
out of pocket expenditure presents itself within a life time it is unlikely to completely
dissipate. Alternatively, those who have been sick in the past within a life cycle, and
require out of pocket spending, are more likely to require it in the future.

Analysis σα σε ση ρ

Rough graphical estimates 0.59 0.1 1
System of non-linear equations 0.515 0.128 0.996
MDE estimation 0.236 0.406 0.107 0.995
Standard errors (0.050) (0.015) (0.004) (0.0008)

Table 3: Stage IIb MDE estimation

There have been few other studies on the health cost process. French and Jones
(2004) looked at a wide range of possible processes, and fitted an ARMA(1, 1) process
to health cost data within the HRS (inherently limited to ages 51+). This process was
then decomposed into AR(1) plus white noise, with one year shocks approximated from
2 year HRS data, and subsequently fitted to a model of the distribution of catastrophic
health care shocks. The decomposed and fitted processes are respectively French (1)
and French (2) in Table 4. Feenberg and Skinner (1992) performed an estimation of the
medical expenditure process based on the tax filings of those who have deducted the

52000 random samples, with replacement, of N individuals will be taken from the overall sample of
N , and the estimation procedure above is then performed. Standard errors are taken from cross-sample
variation.

Standard errors could also be computed in the following manner: (G′ΩG)−1G′ΩVΩG(G′ΩG)−1,
where G is the gradient matrix of the objective VCV ∂f(θ∗)/∂θ, evaluated at the parameter θ∗ ∈ Θ.
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costs, whilst Hubbard, Skinner et al. (1995) utilise data from the 1977 National Health
Care Expenditure Survey.

Estimation σε ση 6 ρ

MDE estimation 0.406 0.107 0.995
French, HRS data (1) 1.019 0.362 0.922
French, HRS data (2) 1.347 0.281 0.925
Feenberg & Skinner 0.316 0.230 0.896
Hubbard et al. 0.469 0.418 0.901

Table 4: Comparison to other estimates

Firstly, the estimate for σε , the transitory effect, is far smaller than French’s but
roughly in line with both Hubbard and Freenberg & Skinner’s. Firstly, as none of the
models report an individual fixed effect, this is not included in the tables, but may be the
source of the disparity. Secondly, French and Jones (2004) discuss potential reasons as
to why their estimates are so vastly different to the previous models, and concludes that
a possible reason is due to their inclusion of health care costs of those who have died
mid sample, and therefore have higher health costs. In general, age seems indicative of
where the differences lie - French and Jones solely look at agents over the age of 50, as
this is all that HRS captures. This does not capture the behaviour of medical cost shocks
at the start of the life cycle, potentially missing prior volatility. Although the process
is stationary over the life cycle, not capturing the lower disparities in individual data
throughout the bulk of the working life cycle could contribute to these differences.

Turning to the smaller differences in the MDE estimates of σε to the Hubbard or
Freenberg results, these could simply be attributed to rising general variance of medical
expenditure of time. However, the source of the data may again be an issue - the tax
returns provided for Freenberg’s estimation could simply be less variable than the survey
results. As French and Jones (2004) note, only items are costly enough to be itemised are
included within the sample. Given that Hubbard et al. based their estimates in part on
the Tobit tax model of Freenberg, these results inherent similar properties. Alternatively,
measurement error may be higher in the MEPS sample, as this is solely captured by σε .

The most important reason for the difference in the processes is the near unit root of

6ση is obtained from the variance of the autoregressive component of French and Jones’s (2004)
estimations.
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the MDE estimation - directly translating from the evidence seen in the cross sectional
variance graphs. The estimate for the innovation to the permanent shock ση is clearly the
smallest of the set. However, it is important to note that this is coupled with the higher
persistence of the AR(1) shock and therefore this parameter has much more of an effect
across the life cycle than the other model’s estimates. Intuitively - the other models
predict more equally distributed variance across the life cycle, whilst this estimation sees
variance as a linear function of age - the cross sectional variance of shocks is highest
upon reaching old age. French and Jones, in only capturing the expenditure process of
the already old, perhaps misses the persistence across the entire life cycle.

In summary, this model has shown that there is robust evidence that medical cost
shocks are extremely persistent over the life cycle. Although the fixed effect is larger
than the conditional variance of the permanent shock, this gets amplified across the life
cycle. Similar to Storesletten, Telmer et al.’s (2004) findings for the income process, the
almost unit root of the medical cost process is a direct implication of the linear increase
in cross sectional variance over the life cycle.

22



4 Life cycle model

Having determined an estimated medical expenditure process, this section will now
tackle the core question of this paper: what is the effect of the uncertainty of these
shocks on the wealth distribution of an economy? This paper presents a stochastic
finite horizon life cycle model of this cost risk, similar to Palumbo (1999) and Hubbard,
Skinner et al. (1995). Agents will face three sources of uncertainty: individuals face
idiosyncratic medical expenditure shocks as estimated by the procedures above, they
also face idiosyncratic income shocks and face risk regarding their longevity (i.e. a
non-zero risk of dying at every point in the life cycle). This model therefore allows
the precautionary savings motives discussed throughout the previous sections to be
explored and tested through calibration and parameterisation with contemporary data
and estimation techniques.

4.1 Outline

Consider the agent’s problem:

max
ch,ah+1

E
H∑

h=1

βhφhu(ch) (15)

s.t. ch + a′h+1 ≤ (1 + r)ah + yh − mh + bt (16)

The agent will choose optimal ch and ah+1, consumption and asset holding respec-
tively, in order to maximise their expected utility over their life cycle subject to their
budget constraint. The risks discussed present themselves through the following param-
eters:

φh denotes conditional survival probabilities of reaching age h + 1, having attained age
h, and act as a discount rate. It is assumed that households do not have a full market
available to insure against this risk - for example, an actuarially fair annuities market
could mitigate against this risk and therefore it would lose its bite on consumption
patterns (Hubbard, 1987; Friedman and Warshawsky, 1990; Hubbard, Skinner et al.,
1995).

mh denotes medical expenditure at age h. This is modelled as an exogenous shock to
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the budget constraint. In some papers, health costs are modelled as providing utility (or
alleviating disutility), but this paper will model them as a negative shock to the budget
constraint, following the models of De Nardi, French et al. (2010); Palumbo (1999);
Kotlikoff (1988) and Hubbard, Skinner et al. (1995). This paper also abstracts from
the potential endogeneity of health costs through (observed) health status. As estimated
above, health cost shocks are assumed to follow the following process:

ln mh = κh + α + zh + εh (17)

zh = ρzh−1 + ηh

As estimated previously, α is a fixed effect drawn at birth from the distribution
α ∼ N(0, σ2

α); εh is a transitory shock, drawn at each age h from the distribution
εh ∼ N(0, σ2

ε ) and zh is a permanent AR(1) shock with innovation ηh ∼ N(0, σ2
η ). κh

determines the deterministic profile of medical expenditure at age h.
In comparison to other models, the health shocks here are directly modelled. Kot-

likoff’s (1988) model assumes that the shocks are independent over the life cycle, and
are drawn from a simplified distribution not from empirical micro data. Palumbo (1999)
utilises uncertainty in health status to matched regressed expenditure values to produce
cost uncertainty. De Nardi, French et al. (2016) also models endogenous medical costs,
in part, and Ozkan (2011) has modeled a form of cost through preventative medical
expenditure. This paper directly models a process for medical cost shocks, empirically
grounded in the micro data - Hubbard, Skinner et al. (1995) have estimated a similar
model, but uses material from Feenberg and Skinner (1992) for their estimates. The
model this paper is estimating is fully self-contained.

yh denotes income in year t. This follows a similar process to medical expenditure,
following Storesletten, Telmer et al. (2004); Hubbard, Skinner et al. (1995) etc; with
conformable assumptions to the above. After the age of retirement agents receive a
pension.

ln yh = κ
y

h + α
y + zyh + ε

y

h (18)

zyh = ρ
yzyh−1 + η

y

h

bt denotes government transfers. In line with De Nardi, French et al. (2010), Hubbard,
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Skinner et al. (1995) a consumption floor, c̄ will hold:

bt = max
[
c̄ + mt − (1 + r)ah − yh,0

]
(19)

Exogenous government transfers will ensure that an agent’s consumption doesn’t fall
below the floor - this is important for savings when negative shocks enter into the budget
constraint, and provides a simple model of social security. The floor could be funded
with taxes, but this model is abstracted from government resource allocation.

4.2 Calibration

This paper will calibrate the model described above using various sources of microdata,
in order to closely match the empirical reality.

Time. One period of the model, h, is one calendar year within the life cycle. Agents
start their lives at age 21, and are certainly dead by age 100. Conditional on surviving,
they retire at age 65.

Mortality. Survival rates are calibrated to actuarial life tables from the National Center
for Health Statistics for the year 2002 - the starting year of the MEPS sample used.

Patience. In combination with the mortality rates, the time preference parameter β
discounts the future utility stream. The discount factor is set to 0.96, in line with values
used by Huggett (1993), Cagetti and DeNardi (2006) and Hubbard, Skinner et al. (1995).

Utility. The CRRA (isoelastic) utility function is widely used in the literature, c.f.
Storesletten, Telmer et al. (2004), Cagetti and De Nardi (2006) etc.

u(c) =
c(1−γ) − 1

1 − γ

The choice of γ is important for three reasons directly related to the savings behaviour
of agents. Firstly, it functions as the coefficient of relative risk aversion; secondly, 1/γ
is the intertemporal elasticity of consumption. Most pertinently, γ + 1 drives the pre-
cautionary savings motive, and is a measure of prudence. Through Jensen’s inequality,
it can be shown that a convex marginal utility function (u′′′) generates prudence - an
additional unit of consumption is more valuable to an agent when consumption is low,
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as opposed to when consumption is high. Kimball (1990) defines a measure of absolute
prudence as P(w) ≡ −u′′′(c)

u′′(c) .
In line with a large section of the literature, this analysis will set γ to 1.5 (see

Castañeda, Díaz-Giménez et al. (2003), c.f. Huggett (1993), Mehra and Prescott (1985)
for a discussion.

Medical expenditure. Medical expenditure shocks are calibrated to the model estimated
in this paper: σα = 0.236, σε = 0.406, ση = 0.107 and ρ = 0.995. The deterministic
factor, κh, is calibrated to the age profile of income levels within the sample set of the
MEPS and HRS datasets.

Income. The income process is modelled as an autoregressive income shock with
one lag, potential fixed and transitory effects are not implemented due to computational
limitations. The persistence and innovations to this process use the estimation performed
by Storesletten, Telmer et al. (2004): ρy = 0.977, ηyh = 0.033 The deterministic part of
income at each age h, κy, is calibrated to the age profile of income levels (income being
defined as total earnings and pensions7) within the pooled MEPS dataset used for the
estimation above, and the HRS.

4.3 Solution method

This model is unable to solved analytically with closed form solutions. Therefore, this
paper will solve the stochastic life cycle model using discretised approximations of the
shocks.

There are three state variables: asset choice last period (a), income state last period
(s), and medical state last period (e). The AR(1) shocks of the income and medical cost
components must be also discretised. The standard in the literature is to utilise Tauchen’s
(1986) method of transforming an AR(1) process into a discrete set of Markov-chain
states. However, this method is not robust to highly persistent processes. Therefore, this
paper will use the method of discretisation proposed by Rouwenhorst, established in the
macroeconomic literature by Kopecky and Suen (2010). 8

The following regularity constraints are also imposed: (1) the choice variable must
always be at least the value of the consumption floor, ct + at+1 ≥ c̄, (2) asset choice must

7WAGEP and PENSP in the MEPS dataset.
8The processes were discretised into 7 states with mean zero, and 7x7 corresponding Markov-chains.
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be non-negative (a strict no borrowing constraint): at+1 ≥ 0.
Following the solution method of İmrohoroǧlu, İmrohoroǧlu et al. (2001), discre-

tise the asset space: let A = {a1,a2, ...,am} denote the grid of possible asset holding
points. Conformable entities S and E exist for income shocks and medical expendi-
tures respectively. At the beginning of each period h, the agent finds themselves in state
(a, s, e) ∈ A×S×E . Let (a j, s j, e j) ∈ Ω j define the set of constrained possible states, such
that the budget constraint and regularity constraints hold at age j for j ∈ {21,22, ...,100}.
Vj(a, s, e) can now be defined as the solution to the agent’s dynamic problem (the Bellman
equation).

Vj(a, s, e) = max
a′

{
u(c) + βφ j+1EVj+1(a′, s′, e′

}
(20)

Given that the agent is dead with certainty at age H + 1, the value function and the
corresponding decision rule can be obtained through solving the problem backwards
from the last period of life. Substituting the budget constraint into the Bellman equation
allows the agent to only have one choice variable, their asset holdings.

In order to develop aggregate statistics, the economy is Monte Carlo simulated
through forward iteration over the life cycle, given the optimal decision rules and value
function generated using the procedure above. Life cycle profiles are formed and full
simulated panel data of each economic variable is generated. 2,000 individuals are
simulated and followed over their life cycle. The initial state, medical and income
shocks are drawn from the distributions detailed in section 4.2.9

The aim is to observe the economy at a steady state - this is approximated by the
distribution of the simulated households (weighted by survival probability) at each age h,
through the law of large numbers. This distribution is a snapshot across many different
cohorts of agents at the point they reach age h. This snapshot is assumed stationary, as
the economy is in a steady state. Aggregate economic variables can then be constructed
using the cross-sectional information from the steady state snapshot.10

9The transitory and fixed effect are not included in the discussion above, for brevity, but must also be
discretised. The transitory shocks are transformed into a 7 element vector, with each element i matching
the mass of the normal distribution at percentile i/7. The agent has a 1/7 chance of choosing any element
within that vector at each period. Computing the economy with fixed effects is more computational
intensive task due to the fact that unique decision rules and value functions must be calculated for for
possible effect. For that reason, it is discretised in a similar fashion, but over three states - a positive,
negative or neutral effect (of mean zero). 1/3 of the agents simulated are assigned to each fixed state.

10This is performed through weighting the asset densities of each age group by survival probabilities
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4.4 Results

The results of the model described suggests that adding uncertain medical expenditure
to the life cycle increases wealth inequality within an economy quite significantly. The
table below displays the benchmark model, which only includes idiosyncratic income
risk, and the full model with modelled medical expenditure shocks.

Share of total wealth (%)

Source of distribution Gini Top 40% 20% 10% 5% 1%

Data (SCF, 2001) 0.79 94 82 69 57 32
Baseline model 0.60 88 59 34 18 4
With medical expenditure shocks 0.80 99 87 65 40 10

Table 5: Modeled wealth distribution with medical expenditure shocks

Firstly, the Gini coefficient is well matched - this is the overall measure of inequality
in the economy. The percentile information shows exactly how this wealth is distributed.
The top 20 per cent to 5 per cent are very well matched to the data - a large proportion
of wealth sits at the right tail of the distribution. However, the top 1 per cent and the
overall top 40 per cent are less well matched. To understand why this model works
well is also to understand its limitations - both of which give important insight into the
importance and mechanism of health costs in understanding inequality. The intuition as
to why this occurs is from two important factors: the precautionary motive is strong, the
agent is well inclined to build up savings for future medical costs shocks, but the medical
costs themselves bring with them a potential inability to build up even basic life-cycle
requirements for retirement saving.

The precautionary motive is evident and well established - the need to save for the
potential of high medical cost shocks in the future is built into the value function. The
agent is well motivated to build substantial buffer stocks for the two precautionary factors
he faces: income shocks and health cost shocks. This can be seen in the Table 6 below.
Artificially increasing the variance of the innovation of the medical cost shocks increases
the Gini coefficient by 10 percentage points, and increase the density at the right hand tail
of the distribution - wealth density in the best off in society appears to be an increasing
function of the variance of medical costs shocks.
and a population growth rate, n, calibrated to 1 per cent.
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Share (%)
Source of distribution Gini 10% 5% 1%

ση = 0.017 0.8 65 40 10
ση = 0.5 0.9 73 52 17

Table 6: Sensitivity test: increased variance of cost innovations

Figure 5: Savings policy functions, light gray represents benchmark model

The asset functions of the agents provide an illuminating picture of the savings
implications of medical costs. Figure 5 shows cross-sectional mean assets at each age
in the lifecycle for both the benchmark and the cost shock model. Both functions have
been scaled to appear on the same y-axis, but peak savings in the cost shock model are
around 50-60 per cent of those in the benchmark.11 The striking feature is the clear shift
to the right of the peak. The benchmark model shows Modigliani’s (1980) assertion -
agents will save until the point of retirement (in this case, age 65), and subsequently
spend through their savings. However, the potential of large medical cost into the old age
makes it vital for savings to continue into later life, and therefore savings remain until
late in the life cycle. Further, savings are deaccumulated slower as the agent reaches the

11The difference in granularity is due to the resolution of the discretised grid sizes, as the benchmark
model is simpler a more highly resolved grid can be used. However, the model is mathematically
equivalent.
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21-25 26-30 31-35 36-40 41-45 46-50 80-100 Peak
21-25 1
26-30 0.3057 1
31-35 0.1811 0.8121 1
36-40 0.1422 0.714 0.9498 1
41-45 0.1197 0.6844 0.9118 0.9802 1
46-50 0.1308 0.6821 0.8915 0.9588 0.9879 1
80-100 0.1258 0.4982 0.6792 0.7561 0.7971 0.8265 1
Peak 0.1211 0.6356 0.8315 0.9038 0.94 0.9642 0.9081 1

Table 7: Correlation matrix of average asset holdings, by age band

end of their life due to the potential for costs late into their lives.
However, the mean values do not portray the full picture of asset accumulation, and

thus the overall wealth distribution. It is also important to consider the effects on the
budget constraint of the medical cost risk throughout the life cycle. Wealth inequality is
driven by a second factor: the inability to save. Faced with variable cost shocks at the
beginning of the life cycle, and coupled with idiosyncratic income risk, savings may not
be able to be formed at all whilst an agent is in the working portion of their lives. As
Figure F.1 shows - a Lorenz curve of wealth distribution in the modelled and benchmark
economies - a large proportion of agents hold no assets at all, a feature seen in the
empirical distribution of wealth. The number of agents holding no wealth is markedly
increased from the benchmark economy.

This corroborates the findings of Hubbard, Skinner et al. (1994) who asks why don’t
people save. Rather than attributing wealth inequality to irrational myopia (even the
chosen myopia of Krusell and Smith (1998)), this model allows for a low level of wealth
accumulation can be explained. Table 7 displays the correlation matrix of average asset
holdings of the simulated households, averaged over age bins within their life cycles.
What is shown clearly is that the amount of assets accumulated in the first few years (up
to age 30) of the life cycle is reasonably to highly correlated with both maximum assets
accumulated and assets available in the last few years of life. If an agent is unable to save
in the early years of their life, due to the negative shocks to the budget constraint that
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they receive, the agent is unlikely to make up that saving in later life.12 The amount of
low asset holding households is substantial due to the action not just at the point where
the shock hits the budget constraint, but the effect this on the decision making process
over the whole of the rest of the life cycle.

Although the model does increase the wealth inequality at the top of the distribution,
it doesn’t fully fit the extreme right of the wealth distribution, and is more effective in
changing the savings behaviour throughout the population. To improve the fit in the top
5% to 1% of the economy, this model is well suited to be placed with a fully featured
model, alongside bequests and entrepreneurs savings motives in order to generate a tight
fit to the empirical data at the very end of the right tail.

5 Conclusion

Through accounting for the profile of health care shocks across the entire life cycle, this
paper has presented two important findings. Firstly, a full identification procedure for
medical expenditure shocks has been established. The analysis of the cross sectional
variance of shocks over the life cycle has shown that it is compelling to model health
care shocks as not just a highly persistent process, but a process with a near unit root -
medical cost shocks are almost permanent. This is clearly implied by the linear shape of
the cross sectional variances across the life cycle, as captured by the graphical analysis.
Placing these observations inside a more complete GMM minimum distance estimation
system confirms that these findings are robust.

Secondly this paper developed a structural, stochastic heterogeneous agent life cycle
model of health care expenditure shocks, including idiosyncratic income andmedical cost
risk. Accounting for and calibrating themodel to the empirically observed process brings
the modelled distribution of wealth much closer to the empirical reality, increasing the
Gini coefficient by 20 base points compared to a baseline model. This result is driven by
a clear precautionary savings motive, and also establishes a mechanism for the potential
inability to save due to unexpected shifts in the budget constraint. Wealth formed in the
very early stages of the life cycle is highly correlated with peak and final asset holdings.

Some potential limitations have been raised in this paper. Measurement error within

12This is also due to the consumption smoothing feature of the utility function.
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the MEPS data set could not be insignificant. This has been managed in the late life
cycle through the analysis of HRS data but, as discussed, without full information on
nursing home expenditure the analysis be under estimating the key parameters. However,
as discussed in French and Jones (2004) and Storesletten, Telmer et al. (2004), any
other measurement error is captured in the transitory shock, which therefore could be
overestimated.

The model itself could be extended in a number of interesting ways. There is clear
scope for this model to be analysed within general equilibrium. The life cycle model es-
timated does not account for the prices of labour or assets, which could produce differing
optimal savings functions. Placing medical expenditure shocks within a fully specified
general equilibrium model, with overlapping generations, bequests and social security,
could produce valuable results, and help quantify the effect of medical expenditure
shocks and its interaction with savings at the end of the life cycle.

Further extensions could be made to the mechanism of action of medical cost shocks.
Endogoneising the medical costs shocks is a natural step - this could be performed
through constructing a state of health status, from which health costs are derived. Al-
ternatively, health costs could impact consumption through the utility function, not just
the budget constraint. This would reflect the fact that medical expenditure variability is
to some extent driven by consumer choice - low wealth agents could perhaps choose a
lower quality or quantity of health care.

This paper sets itself within the vast canon of literature on wealth inequality. Id-
iosyncratic medical expenditure shocks, and the mechanism through which they act,
appear to play a non-trivial role in the development of inequality in the United States and
could provide another rich avenue of research into the thick right tail of the empirically
observed distribution.
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A Wealth inequality within heterogeneous agent models

Share of total wealth (%)

Source of distribution Gini Top 40% 20% 10% 5% 1%

Empirical (SCF, 2001) 0.79 94 82 69 57 32

Aiyagari (1994) baseline (σ = 0.2) 0.38 / 41 9.9 / 3.2
Increased variance (σ = 0.4) 0.41 / 45 12 / 4

Krusell and Smith (1998) baseline 0.26 / 35 20 11 3
With preference hetrogeneity 0.66 / 74 61 46 20

Cagetti and De Nardi (2006) baseline 0.6 95 58 / 20 4
With entrepeneurship 0.8 94 83 / 60 31

De Nardi (2004) baseline 0.67 90 69 / 27 7
With voluntary bequests 0.74 95 76 / 37 14

/ denotes unreported wealth percentiles

Table A.1: Wealth inequality within heterogeneous agent models
Data sourced from: Federal Reserve (2001), Quadrini and Ríos-Rull (1997), Krusell and Smith (2015),

Cagetti and De Nardi (2006), De Nardi (2015)

s’ = 1 s’ = 2 s’ = 3 s’ = 4

s = 1 96.24 1.14 0.39 0.006

s = 2 3.07 94.33 0.37 0

s = 3 1.5 0.43 95.82 0.02

s = 4 10.66 0.49 6.11 80.51

Table A.2: Markov transition matrix between endowment states
(Castañeda, Díaz-Giménez et al., 2003)
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B Summary statistics of MEPS dataset

Age Out of pocket Total Percent Total Public Private Uninsured
(N) expenditure expenditure male income insurance insurance
21-25 349.661 1900.366 0.509342 16459.53 0.02141 0.417406 0.537191

(28,665) (10.948) (79.251) (0.005) (201.83) (0.002) (0.007) (0.007)

26-30 429.2248 2349.715 0.489836 28832.44 0.034351 0.354251 0.512217
(29,202) (11.9) (66.561) (0.004) (352.01) (0.002) (0.007) (0.007)

31-35 492.7714 2858.455 0.494012 34741.66 0.042004 0.334838 0.481313
(29,288) (14.095) (77.307) (0.004) (410.11) (0.002) (0.006) (0.006)

36-40 510.505 2912.28 0.491974 37876.46 0.044413 0.361752 0.460711
(29,271) (10.65) (64.685) (0.004) (426.55) (0.002) (0.006) (0.005)

41-45 619.6736 3500.145 0.490391 38577.58 0.045748 0.387177 0.442616
(29,255) (13.856) (122.818) (0.004) (463.91) (0.002) (0.006) (0.006)

46-50 755.1034 4217.53 0.485901 38808.75 0.045236 0.396811 0.436141
(29,354) (14.645) (91.765) (0.004) (439.96) (0.002) (0.006) (0.005)

51-55 913.0449 5411.704 0.493058 39251.62 0.041353 0.384373 0.444812
(27,386) (15.543) (122.667) (0.004) (480.46) (0.002) (0.006) (0.005)

56-60 1102.464 6662.364 0.482051 36995.33 0.048673 0.371368 0.42902
(23,400) (21.098) (193.433) (0.005) (484.24) (0.003) (0.006) (0.006)

61-65 1305.167 7981.847 0.478818 29461.41 0.059298 0.375788 0.40518
(18,615) (25.443) (192.713) (0.005) (503.31) (0.003) (0.007) (0.007)

66-70 1275.688 8468.134 0.469364 19172.19 0.072924 0.422588 0.36064
(14,399) (28.538) (209.088) (0.005) (510.12) (0.004) (0.008) (0.007)

71-75 1389.236 9613.77 0.446417 12930.86 0.096062 0.45712 0.318736
(11,139) (29.465) (228.086) (0.006) (449.87) (0.004) (0.009) (0.008)

76-80 1525.935 10208.1 0.420467 10313.37 0.116393 0.473638 0.303549
(8,690) (39.429) (231.308) (0.007) (475.23) (0.005) (0.009) (0.009)

81-85 1555.25 10658.37 0.394346 8510.86 0.135455 0.484296 0.285417
(5,091) (52.396) (299.383) (0.009) (363.27) (0.008) (0.012) (0.012)

N and standard error in parentheses

Table B.1: MEPS summary statistics
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C MEPS summary figures

Figure C.1: Mean total medical expenditure, by age

Figure C.2: Percentage out of pocket medical expenditure, by age

40



Figure C.3: Out of pocket expenditure, including HRS, by age

Figure C.4: Proportion with public medical insurance, by age
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Figure C.5: Proportion with no medical insurance, by age

Figure C.6: Earnings and pension income, by age
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Figure C.7: Proportion of medical expenditure to total combined earnings and pension
income

Figure C.8: Proportion of medical expenditure, by payer type
(De Nardi, French et al., 2016)
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D Identification Stage IIa: moment condition proof

Proof. Var(uih) = σ
2
α + σ

2
η

∑h−1
j=0 ρ

2 j + σ2
ε

uih = αi + zih + εih

Var(uih) = Var(αi) + Var(zih) + Var(εih)

= σ2
α + σ

2
ε + Var(ρzi,h−1 + ηih) (from i.i.d assumptions)

= σ2
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ε �
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E Identification Stage IIa: cross sectional variances

Figure E.1: Cross sectional variance by gender, male (black), female (grey)

Figure E.2: Cross sectional variance by marital status, married (black), unmarried (grey)
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F Life cycle model: Lorenz curve

Figure F.1: Lorenz curves of the model and benchmark economies
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