Discrete Choice Model - Eurobarometer Survey Derivation of a Multichoice Logit model Thomas Monk

The agent is presented with a normalised set of J options. She is instructed to pick the j_1 most important options from that set. The following assumes $j_1 = 2$, however this could be extended arbitrarilaly.

This derivation adapts Ophem, Stam et al. (1999), and Ben-Akiva, Lerman et al. (1985, pp 104-107).

1 Additive random utility model

Consider a random utility model, following McFadden (1974), where the utility generated by alternative $j, j \in \{1, 2, ..., M\}$. Individual subscripts are dropped for simplicity.

$$U_j = V_j + \epsilon_j \tag{1}$$

where V_j is the deterministic component, depending on individual specific and alternative specific factors, and ϵ_j is stochastic component. Assume ϵ_j is independently distributed across both alternatives and observations, and is has a Gumbel extreme value distribution:

$$F(\epsilon_j) = H_j(U_j) = \exp(-\exp(-\epsilon_j))$$
⁽²⁾

substituting in the model,

$$F(\epsilon_j) = \exp(-\exp(-(U_j - V_j)))$$
(3)

Define $\mathcal{J} = 1, 2, ..., J$, and $k = 1, ..., j_1$. Further, define \hat{U} as the maximum utility from l alternatives, where $l = M \setminus k$.

We are therefore interested in estimating the probability that the utilities generated by options 1 and 2 exceed all the utilities of the options in l:

$$P(\{U_1, U_2\} > \max_{j=k+1,\dots,J} \{U_j\})$$
(4)

Following Ophem, Stam et al. (1999, p. 119), equation 4 can be written as:

$$1 - P(\max_{j=3,\dots,J} U_j > \max\{U_1, U_2\}) - P(\max_{j=3,\dots,J} U_j > U_1) + P(\max_{j=3,\dots,J} U_j > U_2)$$
(5)

1.1 Single choice made

In the case of None or Don't Know, only one choice is made for all observations. In this case, we need to calculate the simpler density:

$$P(U_1 > \max_{j=2,\dots,15} U_j)$$
(6)

1.2 Properties of the Gumbel distribution (Ben-Akiva, Lerman et al., 1985, p 104)

If the random variable ϵ is distributed under the Gumbel distribution, then:

$$F(\epsilon) = \exp(-\exp(-\mu(\epsilon - \eta))) \tag{7}$$

where η is a location parameter, and μ is a positive scale parameter. The distribution has the following properties:

- 1. The mode is η .
- 2. The mean is $\eta + \gamma/\mu$, where γ is Euler's constant.
- 3. The variance is $\pi^2/6\mu^2$.
- 4. If ϵ is Gumbel distributed with parameters (η, μ) , and V and α are scalar constants, then $\alpha \epsilon + V$ is Gumbel distributed with parameters $(\alpha \eta + V, \mu/\alpha)$.
- 5. If ϵ_1 and ϵ_2 are independent Gumbel distributed variables with parameters (η_1, μ) and (η_2, μ) respectively, then $\epsilon^* = \epsilon_1 \epsilon_2$ is logistically distributed:

$$F(\epsilon^{\star}) = \frac{1}{1 + \exp(\mu(\eta_2 - \eta_1 - \epsilon^{\star}))}$$
(8)

6. If $(\epsilon_1, \epsilon_2, ..., \epsilon_J)$ are J independent Gumbel distributed random variables with parameters (η_j, μ) respectively, then max $(\epsilon_1, \epsilon_2, ..., \epsilon_J)$ is Gumbel distributed with parameters:

$$\left(\frac{1}{\mu}\ln\sum_{j=1}^{J}\exp\left(\mu\cdot\eta_{j}\right),\mu\right)\tag{9}$$

The mean of ϵ_j is not identified if V_j contains an intercept. We can then, without loss of generality impose that $\eta = 0, \forall j$.

More generally than the above, the overall scale of utility is not identified. Therefore, only J - 1 scale parameters may be identified, and a natural choice of normalisation is to impose that one of the μ_j is equal to 1. McFadden (1974) further imposes the hypothesis that $\mu_j = 1, \forall j$.

Therefore, equations 8 simplifies to:

$$F(\epsilon^{\star}) = \frac{1}{1 + \exp(-\epsilon^{\star})} \tag{8a}$$

1.3 Deriving the multichoice logit model

Our equation of interest is the following:

$$1 - P(\max_{j=3,\dots,J} U_j > U_1) - P(\max_{j=3,\dots,J} U_j > U_2) + P(\max_{j=3,\dots,J} U_j > \max\{U_1, U_2\})$$
(5)

Which is equivalent to:

$$1 - P(U_1 - \max_{j=3,\dots,J} U_j \le 0) - P(U_2 - \max_{j=3,\dots,J} U_j \le 0) + P(\max\{U_1, U_2\} - \max_{j=3,\dots,J} U_j \le 0)$$
(5)

Given property 4, and our assumptions, the affine transformation of the random variable ϵ , as in the case of the random utility model, $U_j = V_j + e_j$, is distributed with parameters $(\eta, \mu) = (V_j, 1)$.

Therefore, given equation 9, $U^* \equiv \max_{j=3,\dots,J} U_j$ is also Gumbel distributed, with the following parameters (η, μ) :

$$\max_{j=3,\dots,J} U_j \equiv U^* \sim G\left(\ln\sum_{j=3}^J \exp\left(V_j\right), 1\right)$$
(10)

Similarly, as a special case, $U_{1,2}^* \equiv \max(U_1, U_2)$ is also Gumbel distributed with the following parameters (η, μ) :

$$\max\{U_1, U_2\} \sim G\Big(\ln[\exp(V_1) + \exp(V_2)], 1\Big)$$
(11)

Therefore, $U_1^* \equiv U^* - U_1$ is logistically distributed, given property 5:

$$F(U_1^*) = \frac{1}{1 + \exp(V_1 - \ln \sum_{j=3}^{J} \exp(V_j) - U_1^*)}$$
(12)

Therefore, using standard properties of exponentials:

$$P(U_{1}^{*} \leq 0) = F(0) = \frac{1}{1 + \exp(V_{1} - \ln \sum_{j=3}^{J} e^{V_{j}})}$$

$$= \frac{1}{1 + e^{V_{1}}/e^{\ln \sum_{j=3}^{J} e^{V_{j}}}}$$

$$= \frac{1}{1 + e^{V_{1}}/\sum_{j=3}^{J} e^{V_{j}}}$$

$$= \frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V_{1}} + \sum_{j=3}^{J} e^{V_{j}}}$$
(13)

Similarly, defining $U_2^* \equiv U^* - U_2$:

$$F(U_2^*) = \frac{\sum_{j=3}^{J} e^{V_j}}{e^{V_2} + \sum_{j=3}^{J} e^{V_j}}$$
(14)

Finally, $U_{1,2}^{**} = U^* - U_{1,2}^*$ is also logistically distributed:

$$F(U_{1,2}^{**}) = \frac{1}{1 + e^{\ln[e^{V_1} + e^{V_2}] - \ln \sum_{j=3}^{J} e^{V_j}} - U_2^*}$$

$$F(0) = \frac{\sum_{j=3}^{J} e^{V_j}}{e^{V_1} + e^{V_2} + \sum_{j=3}^{J} e^{V_j}}$$
(15)

This means that our object of interest becomes:

$$P(\{U_1, U_2\} \ge \max_{j=3,\dots,J} U_j) = P(U_1^* \le 0) + P(U_2^* \le 0) - P(U_{1,2}^{**} \le 0)$$
(16)

which can be represented in closed form as:

$$= \frac{\sum_{j=3}^{J} e^{V_j}}{e^{V_1} + \sum_{j=3}^{J} e^{V_j}} + \frac{\sum_{j=3}^{J} e^{V_j}}{e^{V_2} + \sum_{j=3}^{J} e^{V_j}} - \frac{\sum_{j=3}^{J} e^{V_j}}{e^{V_1} + e^{V_2} + \sum_{j=3}^{J} e^{V_j}}$$
(17)

This is equivalent 1 to Ophem, Stam et al. (1999, pg.120) derivation.

$$P_{q,k,s} = 1 - \frac{\sum_{j=3}^{J} e^{V_j}}{e^{V_1} + \sum_{j=3}^{J} e^{V_j}} - \frac{\sum_{j=3}^{J} e^{V_j}}{e^{V_2} + \sum_{j=3}^{J} e^{V_j}} + \frac{\sum_{j=3}^{J} e^{V_j}}{e^{V_1} + e^{V_2} + \sum_{j=3}^{J} e^{V_j}}$$
(18)

¹1 minus, I need to understand why

1.3.1 Single choice made

In this case, our equation of interest also becomes logistically distributed:

$$P(\max_{j=2,\dots,15} U_j \le U_1) = \frac{1}{1 + \exp(V_1 - \ln \sum_{j=2}^J e^{V_j})}$$
$$= \frac{\sum_{j=2}^J e^{V_j}}{e^{V_1} + \sum_{j=2}^J e^{V_j}}$$
(6)

1.4 The likelihood function

Assume the deterministic part of utility V_j is a linear function of the parameters to be estimated $V_j = X' \beta_j$, where X is a k vector of attributes, and β_j is a k vector of parameters.

To write down the likelihood function, we need to construct dummy variables, $d_{i,j}$ of $S = \binom{M-2}{2}$ combinations of responses: the set is M-2 as Don't Know and None are single choice options. Indicators s, t map to the specific combination in S.

The likelihood function is therefore:

$$\begin{split} L(y_{i}|x_{i};\beta) &= \prod_{s,t}^{N} f(y_{i}|X;\beta) \\ &= \prod_{s,t}^{N} \left[\prod_{s,t}^{S} \left(1 - \frac{\sum_{j \neq s,t} e^{V_{j}}}{e^{V_{s}} + \sum_{j \neq s,t} e^{V_{j}}} - \frac{\sum_{j \neq s,t} e^{V_{j}}}{e^{V_{t}} + \sum_{j \neq s,t} e^{V_{j}}} + \frac{\sum_{j \neq s,t} e^{V_{j}}}{e^{V_{s}} + e^{V_{t}} + \sum_{j \neq s,t} e^{V_{j}}} \right)^{d_{s,t}} \\ &\quad \cdot \prod_{s=M-1}^{M} \left(\frac{\sum_{j \neq s} e^{V_{j}}}{e^{V_{s}} + \sum_{j \neq s} e^{V_{j}}} \right)^{d_{s}} \right] \\ &= \prod_{s=M-1}^{N} \left[\prod_{s,t}^{S} \left(1 - \frac{\sum_{j \neq s,t} e^{X_{j}'\beta_{j}}}{e^{X_{s}'\beta_{j}} + \sum_{j \neq s,t} e^{X_{j}'\beta_{j}}} - \frac{\sum_{j \neq s,t} e^{X_{j}'\beta_{j}}}{e^{X_{t}'\beta_{j}} + \sum_{j \neq s,t} e^{X_{j}'\beta_{j}}} + \frac{\sum_{j \neq s,t} e^{X_{j}'\beta_{j}}}{e^{X_{s}'\beta_{j}} + \sum_{j \neq s,t} e^{X_{j}'\beta_{j}}} \right)^{d_{s,t}} \\ &\quad \cdot \prod_{s=M-1}^{M} \left(\frac{\sum_{j \neq s} e^{X_{j}'\beta_{j}}}{e^{X_{s}'\beta_{j}} + \sum_{j \neq s} e^{X_{j}'\beta_{j}}} \right)^{d_{s}} \right] \end{split}$$
(19)

1.4.1 Using dual choices only

In this case, we use only the subset of the data in which each agent chooses two options. Call the number of observations in this subset N_d , and the number of optons D. Therefore, $S_d = \binom{D}{2}$.

$$L(y_{i}|x_{i};\beta) = \prod_{s,t}^{N_{d}} \left[\prod_{s,t}^{S_{d}} \left(1 - \frac{\sum_{j \neq s,t} e^{X'_{j}\beta_{j}}}{e^{X'_{s}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}}} - \frac{\sum_{j \neq s,t} e^{X'_{j}\beta_{j}}}{e^{X'_{t}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}}} + \frac{\sum_{j \neq s,t} e^{X'_{j}\beta_{j}}}{e^{X'_{s}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}}} \right)^{d_{s,t}} \right]$$
(20)

1.5 Maximum Likelihood Estimation

Using the dual choice model (equation ??):

$$\hat{\beta} = \arg \max_{\beta} L(y_i | x_i; \beta)$$

$$= \arg \max_{\beta} \ln L(y_i | x_i; \beta)$$

$$= \ln \prod_{\beta} \left[\prod_{s,t}^{S_d} \left(1 - \frac{\sum_{j \neq s,t} e^{X'_j \beta_j}}{e^{X'_s \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} - \frac{\sum_{j \neq s,t} e^{X'_j \beta_j}}{e^{X'_t \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} + \frac{\sum_{j \neq s,t} e^{X'_j \beta_j}}{e^{X'_s \beta_j} + e^{X'_t \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} \right]^{d_{s,t}} \right]$$

$$= \sum_{s,t}^{N_d} \sum_{s,t}^{S_d} d_{s,t} \cdot \ln \left[1 - \frac{\sum_{j \neq s,t} e^{X'_j \beta_j}}{e^{X'_s \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} - \frac{\sum_{j \neq s,t} e^{X'_j \beta_j}}{e^{X'_t \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} + \frac{\sum_{j \neq s,t} e^{X'_j \beta_j}}{e^{X'_s \beta_j} + e^{X'_t \beta_j}} \right]$$
(21)

1.6 Jacobian and Hessian

$$\sum_{s,t}^{N_d} \sum_{s,t}^{S_d} d_{s,t} \cdot \ln \left[1 - \frac{\sum_{j \neq s,t} e^{X'_j \beta_j}}{e^{X'_s \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} - \frac{\sum_{j \neq s,t} e^{X'_j \beta_j}}{e^{X'_t \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} + \frac{\sum_{j \neq s,t} e^{X'_j \beta_j}}{e^{X'_s \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} \right] \\
= \sum_{s,t}^{N_d} \sum_{s,t}^{S_d} d_{s,t} \cdot \ln \left[1 - \sum_{j \neq s,t} e^{X'_j \beta_j} \cdot \left[\frac{1}{e^{X'_s \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} - \frac{1}{e^{X'_t \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} + \frac{1}{e^{X'_s \beta_j} + e^{X'_t \beta_j} + \sum_{j \neq s,t} e^{X'_j \beta_j}} \right] \right] \tag{22}$$

The interior summation can just be seen as an indicator function, $I(s, t \in \text{choice})$ - it only turns on the expression when the agent n picks the selection s,t - i.e. it is only true once for each agent. This means it can essentially be ignored in practice.

1.6.1 Jacobian

The derivative with respect to a specific scalar β_s and X_s is as follows. We only need the derivative from the respect of a β_s as only in the case that the β_i is β_s or β_t does this contribute any value to the Jacobian.

I need to check this result with a vector B_s

For example, consider the derivative of $\beta_i, i \neq s$. $d_{s,t}$ in this case is 0, so the whole contribution to the summation can be ignored.

$$\frac{\partial \mathcal{L}}{\partial \beta'_{s}} = \sum_{s,t}^{N_{d}} \sum_{s,t}^{S_{d}} d_{s,t} \cdot - \frac{X'_{s} \cdot e^{X'_{s}\beta_{j}} \cdot \sum_{j \neq s,t} e^{X'_{j}\beta_{j}} \cdot \left(\frac{1}{(e^{X'_{s}\beta_{j}} + e^{X'_{t}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}})^{2}} - \frac{1}{(e^{X'_{s}\beta_{j}} + e^{X'_{t}\beta_{j}})^{2}}\right)}{1 - \sum_{j \neq s,t} e^{X'_{j}\beta_{j}} \cdot \left(\frac{1}{e^{X'_{s}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}}} - \frac{1}{e^{X'_{t}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}}} + \frac{1}{e^{X'_{s}\beta_{j}} + e^{X'_{t}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}}}\right)}{1 - \sum_{j \neq s,t} e^{X'_{s}\beta_{j}} \cdot \sum_{j \neq s,t} e^{X'_{j}\beta_{j}} \cdot \left(\frac{1}{(e^{X'_{s}\beta_{j}} + e^{X'_{t}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}})^{2}} - \frac{1}{(e^{X'_{s}\beta_{j}} + e^{X'_{t}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}}}\right)}{1 - \sum_{j \neq s,t} e^{X'_{j}\beta_{j}} \cdot \left(\frac{1}{(e^{X'_{s}\beta_{j}} + e^{X'_{t}\beta_{j}} - \frac{1}{e^{X'_{t}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}}} + \frac{1}{e^{X'_{s}\beta_{j}} + e^{X'_{t}\beta_{j}} + \sum_{j \neq s,t} e^{X'_{j}\beta_{j}}}\right)}$$

$$(23)$$

References

- Ben-Akiva, M. E., Lerman, S. R. and Lerman, S. R. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand, volume 9. MIT Press.
- Cameron, A. C. and Trivedi, P. K. (2005). *Microeconometrics: Methods and Applications*. Cambridge University Press.
- McFadden, D. (1974). The Measurement of Urban Travel Demand. Journal of Public Economics, 3(4), 303–328.
- Ophem, H. V., Stam, P. and Praag, B. V. (1999). Multichoice Logit: Modeling Incomplete Preference Rankings of Classical Concerts. Journal of Business & Economic Statistics, 17(1), 117–128.