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Thomas Monk

The agent is presented with a normalised set of J options. She is instructed to pick the j1 most important 
options from that set. The following assumes j1 = 2, however this could be extended arbitrarilaly.

This derivation adapts Ophem, Stam et al. (1999), and Ben-Akiva, Lerman et al. (1985, pp 104-107).

1 Additive random utility model

Consider a random utility model, following McFadden (1974), where the utility generated by alternative 
j, j ∈ {1, 2, ..., M}. Individual subscripts are dropped for simplicity.

Uj = Vj + εj (1)

where Vj is the deterministic component, depending on individual specific and alternative specific factors,
and εj is stochastic component. Assume εj is independently distributed across both alternatives and
observations, and is has a Gumbel extreme value distribution:

F (εj) = Hj(Uj) = exp(− exp(−εj)) (2)

substituting in the model,
F (εj) = exp(− exp(−(Uj − Vj))) (3)

Define J = 1, 2, ..., J , and k = 1, ..., j1. Further, define Û as the maximum utility from l alternatives,
where l = M \ k.

We are therefore interested in estimating the probability that the utilities generated by options 1 and 2
exceed all the utilities of the options in l:

P ({U1, U2} > max
j=k+1,...,J

{Uj}) (4)

Following Ophem, Stam et al. (1999, p. 119), equation 4 can be written as:

1− P ( max
j=3,...,J

Uj > max{U1, U2})− P ( max
j=3,...,J

Uj > U1) + P ( max
j=3,...,J

Uj > U2) (5)

1.1 Single choice made

In the case of None or Don’t Know, only one choice is made for all observations. In this case, we need to
calculate the simpler density:

P (U1 > max
j=2,...,15

Uj) (6)
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1.2 Properties of the Gumbel distribution (Ben-Akiva, Lerman et al., 1985,
p 104)

If the random variable ε is distributed under the Gumbel distribution, then:

F (ε) = exp(− exp(−µ(ε− η))) (7)

where η is a location parameter, and µ is a positive scale parameter.
The distribution has the following properties:

1. The mode is η.

2. The mean is η + γ/µ, where γ is Euler’s constant.

3. The variance is π2/6µ2.

4. If ε is Gumbel distributed with parameters (η, µ), and V and α are scalar constants, then αε + V
is Gumbel distributed with parameters (αη + V, µ/α).

5. If ε1 and ε2 are independent Gumbel distributed variables with parameters (η1, µ) and (η2, µ)
respectively, then ε? = ε1 − ε2 is logistically distributed:

F (ε?) =
1

1 + exp(µ(η2 − η1 − ε?))
(8)

6. If (ε1, ε2, ..., εJ) are J independent Gumbel distributed random variables with parameters (ηj , µ)
respectively, then max(ε1, ε2, ..., εJ) is Gumbel distributed with parameters:

( 1

µ
ln

J∑
j=1

exp (µ · ηj), µ
)

(9)

The mean of εj is not identified if Vj contains an intercept. We can then, without loss of generality
impose that η = 0,∀j.

More generally than the above, the overall scale of utility is not identified. Therefore, only J − 1 scale
parameters may be identified, and a natural choice of normalisation is to impose that one of the µj is
equal to 1. McFadden (1974) further imposes the hypothesis that µj = 1, ∀j.

Therefore, equations 8 simplifies to:

F (ε?) =
1

1 + exp(−ε?)
(8a)
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1.3 Deriving the multichoice logit model

Our equation of interest is the following:

1− P ( max
j=3,...,J

Uj > U1)− P ( max
j=3,...,J

Uj > U2) + P ( max
j=3,...,J

Uj > max{U1, U2}) (5)

Which is equivalent to:

1− P (U1 − max
j=3,...,J

Uj ≤ 0)− P (U2 − max
j=3,...,J

Uj ≤ 0) + P (max{U1, U2} − max
j=3,...,J

Uj ≤ 0) (5)

Given property 4, and our assumptions, the affine transformation of the random variable ε, as in the case
of the random utility model, Uj = Vj + ej , is distributed with parameters (η, µ) = (Vj , 1).

Therefore, given equation 9, U∗ ≡ maxj=3,...,J Uj is also Gumbel distributed, with the following param-
eters (η, µ):

max
j=3,...,J

Uj ≡ U∗ ∼ G
(

ln

J∑
j=3

exp (Vj), 1
)

(10)

Similarly, as a special case, U∗1,2 ≡ max(U1, U2) is also Gumbel distributed with the following parameters
(η, µ):

max{U1, U2} ∼ G
(

ln[exp(V1) + exp(V2)], 1
)

(11)

Therefore, U∗1 ≡ U∗ − U1 is logistically distributed, given property 5:

F (U∗1 ) =
1

1 + exp(V1 − ln
∑J
j=3 exp (Vj)− U∗1 )

(12)

Therefore, using standard properties of exponentials:

P (U∗1 ≤ 0) = F (0) =
1

1 + exp(V1 − ln
∑J
j=3 e

Vj )

=
1

1 + eV1/eln
∑J
j=3 e

Vj

=
1

1 + eV1/
∑J
j=3 e

Vj

=

∑J
j=3 e

Vj

eV1 +
∑J
j=3 e

Vj

(13)

Similarly, defining U∗2 ≡ U∗ − U2:

F (U∗2 ) =

∑J
j=3 e

Vj

eV2 +
∑J
j=3 e

Vj
(14)

Finally, U∗∗1,2 = U∗ − U∗1,2 is also logistically distributed:

F (U∗∗1,2) =
1

1 + eln[e
V1+eV2 ]−ln

∑J
j=3 e

Vj − U∗2

F (0) =

∑J
j=3 e

Vj

eV 1 + eV2 +
∑J
j=3 e

Vj

(15)

This means that our object of interest becomes:

P ({U1, U2} ≥ max
j=3,...,J

Uj) = P (U∗1 ≤ 0) + P (U∗2 ≤ 0)− P (U∗∗1,2 ≤ 0) (16)

which can be represented in closed form as:

=

∑J
j=3 e

Vj

eV1 +
∑J
j=3 e

Vj
+

∑J
j=3 e

Vj

eV2 +
∑J
j=3 e

Vj
−

∑J
j=3 e

Vj

eV 1 + eV2 +
∑J
j=3 e

Vj
(17)

This is equivalent1 to Ophem, Stam et al. (1999, pg.120) derivation.

Pq,k,s = 1−
∑J
j=3 e

Vj

eV1 +
∑J
j=3 e

Vj
−

∑J
j=3 e

Vj

eV2 +
∑J
j=3 e

Vj
+

∑J
j=3 e

Vj

eV 1 + eV2 +
∑J
j=3 e

Vj
(18)

11 minus, I need to understand why
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1.3.1 Single choice made

In this case, our equation of interest also becomes logistically distributed:

P ( max
j=2,...,15

Uj ≤ U1) =
1

1 + exp(V1 − ln
∑J
j=2 e

Vj )

=

∑J
j=2 e

Vj

eV1 +
∑J
j=2 e

Vj

(6)
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1.4 The likelihood function

Assume the deterministic part of utility Vj is a linear function of the parameters to be estimated
Vj = X ′βj , where X is a k vector of attributes, and βj is a k vector of parameters.

To write down the likelihood function, we need to construct dummy variables, di,j of S =
(
M−2

2

)
combi-

nations of responses: the set is M − 2 as Don’t Know and None are single choice options. Indicators s, t
map to the specific combination in S.

The likelihood function is therefore:

L(yi|xi;β) =

N∏
f(yi|X;β)

=

N∏[
S∏
s,t

(
1−

∑
j 6=s,t e

Vj

eVs +
∑
j 6=s,t e

Vj
−

∑
j 6=s,t e

Vj

eVt +
∑
j 6=s,t e

Vj
+

∑
j 6=s,t e

Vj

eVs + eVt +
∑
j 6=s,t e

Vj

)ds,t

·
M∏

s=M−1

( ∑
j 6=s e

Vj

eVs +
∑
j 6=s e

Vj

)ds]

=

N∏[
S∏
s,t

(
1−

∑
j 6=s,t e

X′
jβj

eX
′
sβj +

∑
j 6=s,t e

X′
jβj
−

∑
j 6=s,t e

X′
jβj

eX
′
tβj +

∑
j 6=s,t e

X′
jβj

+

∑
j 6=s,t e

X′
jβj

eX
′
sβj + eX

′
tβj +

∑
j 6=s,t e

X′
jβj

)ds,t

·
M∏

s=M−1

( ∑
j 6=s e

X′
jβj

eX
′
sβj +

∑
j 6=s e

X′
jβj

)ds]
(19)

1.4.1 Using dual choices only

In this case, we use only the subset of the data in which each agent chooses two options. Call the number
of observations in this subset Nd, and the number of optons D. Therefore, Sd =

(
D
2

)
.

L(yi|xi;β) =

Nd∏[
Sd∏
s,t

(
1−

∑
j 6=s,t e

X′
jβj

eX
′
sβj +

∑
j 6=s,t e

X′
jβj
−

∑
j 6=s,t e

X′
jβj

eX
′
tβj +

∑
j 6=s,t e

X′
jβj

+

∑
j 6=s,t e

X′
jβj

eX
′
sβj + eX

′
tβj +

∑
j 6=s,t e

X′
jβj

)ds,t]
(20)
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1.5 Maximum Likelihood Estimation

Using the dual choice model (equation ??):

β̂ = arg max
β

L(yi|xi;β)

= arg max
β

lnL(yi|xi;β)

= ln

Nd∏[
Sd∏
s,t

(
1−

∑
j 6=s,t e

X′
jβj

eX
′
sβj +

∑
j 6=s,t e

X′
jβj
−

∑
j 6=s,t e

X′
jβj

eX
′
tβj +

∑
j 6=s,t e

X′
jβj

+

∑
j 6=s,t e

X′
jβj

eX
′
sβj + eX

′
tβj +

∑
j 6=s,t e

X′
jβj

)ds,t]

=

Nd∑ Sd∑
s,t

ds,t · ln
[
1−

∑
j 6=s,t e

X′
jβj

eX
′
sβj +

∑
j 6=s,t e

X′
jβj
−

∑
j 6=s,t e

X′
jβj

eX
′
tβj +

∑
j 6=s,t e

X′
jβj

+

∑
j 6=s,t e

X′
jβj

eX
′
sβj + eX

′
tβj +

∑
j 6=s,t e

X′
jβj

]
(21)
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1.6 Jacobian and Hessian

Nd∑ Sd∑
s,t

ds,t · ln
[
1−

∑
j 6=s,t e

X′
jβj

eX
′
sβj +

∑
j 6=s,t e

X′
jβj
−

∑
j 6=s,t e

X′
jβj

eX
′
tβj +

∑
j 6=s,t e

X′
jβj

+

∑
j 6=s,t e

X′
jβj

eX
′
sβj + eX

′
tβj +

∑
j 6=s,t e

X′
jβj

]

=

Nd∑ Sd∑
s,t

ds,t · ln
[
1−

∑
j 6=s,t

eX
′
jβj ·

[ 1

eX
′
sβj +

∑
j 6=s,t e

X′
jβj
− 1

eX
′
tβj +

∑
j 6=s,t e

X′
jβj

+
1

eX
′
sβj + eX

′
tβj +

∑
j 6=s,t e

X′
jβj

]]
(22)

The interior summation can just be seen as an indicator function, I(s, t ∈ choice) - it only turns on the
expression when the agent n picks the selection s,t - i.e. it is only true once for each agent. This means
it can essentially be ignored in practice.

1.6.1 Jacobian

The derivative with respect to a specific scalar βs and Xs is as follows. We only need the derivative from
the respect of a βs as only in the case that the βi is βs or βt does this contribute any value to the Jacobian.

I need to check this result with a vector Bs

For example, consider the derivative of βi, i 6= s. ds,t in this case is 0, so the whole contribution to the
summation can be ignored.

∂L
∂β′s

=

Nd∑ Sd∑
s,t

ds,t · −
X ′s · eX

′
sβj ·

∑
j 6=s,t e

X′
jβj ·

(
1

(eX
′
sβj+eX

′
tβj+

∑
j 6=s,t e

X′
j
βj )2
− 1

(eX
′
sβj+eX

′
tβj )2

)
1−

∑
j 6=s,t e

X′
jβj ·

(
1

eX
′
sβj+

∑
j 6=s,t e

X′
j
βj
− 1

eX
′
tβj+

∑
j 6=s,t e

X′
j
βj

+ 1

eX
′
sβj+eX

′
tβj+

∑
j 6=s,t e

X′
j
βj

)
=

Nd∑
I(·)−

X ′s · eX
′
sβj ·

∑
j 6=s,t e

X′
jβj ·

(
1

(eX
′
sβj+eX

′
tβj+

∑
j 6=s,t e

X′
j
βj )2
− 1

(eX
′
sβj+eX

′
tβj )2

)
1−

∑
j 6=s,t e

X′
jβj ·

(
1

eX
′
sβj+

∑
j 6=s,t e

X′
j
βj
− 1

eX
′
tβj+

∑
j 6=s,t e

X′
j
βj

+ 1

eX
′
sβj+eX

′
tβj+

∑
j 6=s,t e

X′
j
βj

)
(23)
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