Discrete Choice Model - Eurobarometer Survey
 Derivation of a Multichoice Logit model
 Thomas Monk

The agent is presented with a normalised set of J options. She is instructed to pick the j_{1} most important options from that set. The following assumes $j_{1}=2$, however this could be extended arbitrarilaly.

This derivation adapts Ophem, Stam et al. (1999), and Ben-Akiva, Lerman et al. (1985, pp 104-107).

1 Additive random utility model

Consider a random utility model, following McFadden (1974), where the utility generated by alternative $j, j \in\{1,2, \ldots, M\}$. Individual subscripts are dropped for simplicity.

$$
\begin{equation*}
U_{j}=V_{j}+\epsilon_{j} \tag{1}
\end{equation*}
$$

where V_{j} is the deterministic component, depending on individual specific and alternative specific factors, and ϵ_{j} is stochastic component. Assume ϵ_{j} is independently distributed across both alternatives and observations, and is has a Gumbel extreme value distribution:

$$
\begin{equation*}
F\left(\epsilon_{j}\right)=H_{j}\left(U_{j}\right)=\exp \left(-\exp \left(-\epsilon_{j}\right)\right) \tag{2}
\end{equation*}
$$

substituting in the model,

$$
\begin{equation*}
F\left(\epsilon_{j}\right)=\exp \left(-\exp \left(-\left(U_{j}-V_{j}\right)\right)\right) \tag{3}
\end{equation*}
$$

Define $\mathcal{J}=1,2, \ldots, J$, and $k=1, \ldots, j_{1}$. Further, define \hat{U} as the maximum utility from l alternatives, where $l=M \backslash k$.

We are therefore interested in estimating the probability that the utilities generated by options 1 and 2 exceed all the utilities of the options in l :

$$
\begin{equation*}
P\left(\left\{U_{1}, U_{2}\right\}>\max _{j=k+1, \ldots, J}\left\{U_{j}\right\}\right) \tag{4}
\end{equation*}
$$

Following Ophem, Stam et al. 1999, p. 119), equation 4 can be written as:

$$
\begin{equation*}
1-P\left(\max _{j=3, \ldots, J} U_{j}>\max \left\{U_{1}, U_{2}\right\}\right)-P\left(\max _{j=3, \ldots, J} U_{j}>U_{1}\right)+P\left(\max _{j=3, \ldots, J} U_{j}>U_{2}\right) \tag{5}
\end{equation*}
$$

1.1 Single choice made

In the case of None or Don't Know, only one choice is made for all observations. In this case, we need to calculate the simpler density:

$$
\begin{equation*}
P\left(U_{1}>\max _{j=2, \ldots, 15} U_{j}\right) \tag{6}
\end{equation*}
$$

1.2 Properties of the Gumbel distribution (Ben-Akiva, Lerman et al., 1985, p 104)

If the random variable ϵ is distributed under the Gumbel distribution, then:

$$
\begin{equation*}
F(\epsilon)=\exp (-\exp (-\mu(\epsilon-\eta))) \tag{7}
\end{equation*}
$$

where η is a location parameter, and μ is a positive scale parameter.
The distribution has the following properties:

1. The mode is η.
2. The mean is $\eta+\gamma / \mu$, where γ is Euler's constant.
3. The variance is $\pi^{2} / 6 \mu^{2}$.
4. If ϵ is Gumbel distributed with parameters (η, μ), and V and α are scalar constants, then $\alpha \epsilon+V$ is Gumbel distributed with parameters $(\alpha \eta+V, \mu / \alpha)$.
5. If ϵ_{1} and ϵ_{2} are independent Gumbel distributed variables with parameters $\left(\eta_{1}, \mu\right)$ and $\left(\eta_{2}, \mu\right)$ respectively, then $\epsilon^{\star}=\epsilon_{1}-\epsilon_{2}$ is logistically distributed:

$$
\begin{equation*}
F\left(\epsilon^{\star}\right)=\frac{1}{1+\exp \left(\mu\left(\eta_{2}-\eta_{1}-\epsilon^{\star}\right)\right)} \tag{8}
\end{equation*}
$$

6. If $\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{J}\right)$ are J independent Gumbel distributed random variables with parameters $\left(\eta_{j}, \mu\right)$ respectively, then $\max \left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{J}\right)$ is Gumbel distributed with parameters:

$$
\begin{equation*}
\left(\frac{1}{\mu} \ln \sum_{j=1}^{J} \exp \left(\mu \cdot \eta_{j}\right), \mu\right) \tag{9}
\end{equation*}
$$

The mean of ϵ_{j} is not identified if V_{j} contains an intercept. We can then, without loss of generality impose that $\eta=0, \forall j$.

More generally than the above, the overall scale of utility is not identified. Therefore, only $J-1$ scale parameters may be identified, and a natural choice of normalisation is to impose that one of the μ_{j} is equal to 1. McFadden (1974) further imposes the hypothesis that $\mu_{j}=1, \forall j$.

Therefore, equations 8 simplifies to:

$$
\begin{equation*}
F\left(\epsilon^{\star}\right)=\frac{1}{1+\exp \left(-\epsilon^{\star}\right)} \tag{8a}
\end{equation*}
$$

1.3 Deriving the multichoice logit model

Our equation of interest is the following:

$$
\begin{equation*}
1-P\left(\max _{j=3, \ldots, J} U_{j}>U_{1}\right)-P\left(\max _{j=3, \ldots, J} U_{j}>U_{2}\right)+P\left(\max _{j=3, \ldots, J} U_{j}>\max \left\{U_{1}, U_{2}\right\}\right) \tag{5}
\end{equation*}
$$

Which is equivalent to:

$$
\begin{equation*}
1-P\left(U_{1}-\max _{j=3, \ldots, J} U_{j} \leq 0\right)-P\left(U_{2}-\max _{j=3, \ldots, J} U_{j} \leq 0\right)+P\left(\max \left\{U_{1}, U_{2}\right\}-\max _{j=3, \ldots, J} U_{j} \leq 0\right) \tag{5}
\end{equation*}
$$

Given property 4 , and our assumptions, the affine transformation of the random variable ϵ, as in the case of the random utility model, $U_{j}=V_{j}+e_{j}$, is distributed with parameters $(\eta, \mu)=\left(V_{j}, 1\right)$.

Therefore, given equation $9, U^{*} \equiv \max _{j=3, \ldots, J} U_{j}$ is also Gumbel distributed, with the following parameters (η, μ) :

$$
\begin{equation*}
\max _{j=3, \ldots, J} U_{j} \equiv U^{*} \sim G\left(\ln \sum_{j=3}^{J} \exp \left(V_{j}\right), 1\right) \tag{10}
\end{equation*}
$$

Similarly, as a special case, $U_{1,2}^{*} \equiv \max \left(U_{1}, U_{2}\right)$ is also Gumbel distributed with the following parameters (η, μ) :

$$
\begin{equation*}
\max \left\{U_{1}, U_{2}\right\} \sim G\left(\ln \left[\exp \left(V_{1}\right)+\exp \left(V_{2}\right)\right], 1\right) \tag{11}
\end{equation*}
$$

Therefore, $U_{1}^{*} \equiv U^{*}-U_{1}$ is logistically distributed, given property 5 .

$$
\begin{equation*}
F\left(U_{1}^{*}\right)=\frac{1}{1+\exp \left(V_{1}-\ln \sum_{j=3}^{J} \exp \left(V_{j}\right)-U_{1}^{*}\right)} \tag{12}
\end{equation*}
$$

Therefore, using standard properties of exponentials:

$$
\begin{align*}
P\left(U_{1}^{*} \leq 0\right)=F(0) & =\frac{1}{1+\exp \left(V_{1}-\ln \sum_{j=3}^{J} e^{V_{j}}\right)} \\
& =\frac{1}{1+e^{V_{1}} / e^{\ln \sum_{j=3}^{J} e^{V_{j}}}} \\
& =\frac{1}{1+e^{V_{1}} / \sum_{j=3}^{J} e^{V_{j}}} \tag{13}\\
& =\frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V_{1}}+\sum_{j=3}^{J} e^{V_{j}}}
\end{align*}
$$

Similarly, defining $U_{2}^{*} \equiv U^{*}-U_{2}$:

$$
\begin{equation*}
F\left(U_{2}^{*}\right)=\frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V_{2}}+\sum_{j=3}^{J} e^{V_{j}}} \tag{14}
\end{equation*}
$$

Finally, $U_{1,2}^{* *}=U^{*}-U_{1,2}^{*}$ is also logistically distributed:

$$
\begin{align*}
F\left(U_{1,2}^{* *}\right) & =\frac{1}{1+e^{\ln \left[e^{V_{1}}+e^{V_{2}}\right]-\ln \sum_{j=3}^{J} e^{V_{j}}}-U_{2}^{*}} \\
F(0) & =\frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V 1}+e^{V_{2}}+\sum_{j=3}^{J} e^{V_{j}}} \tag{15}
\end{align*}
$$

This means that our object of interest becomes:

$$
\begin{equation*}
P\left(\left\{U_{1}, U_{2}\right\} \geq \max _{j=3, \ldots, J} U_{j}\right)=P\left(U_{1}^{*} \leq 0\right)+P\left(U_{2}^{*} \leq 0\right)-P\left(U_{1,2}^{* *} \leq 0\right) \tag{16}
\end{equation*}
$$

which can be represented in closed form as:

$$
\begin{equation*}
=\frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V_{1}}+\sum_{j=3}^{J} e^{V_{j}}}+\frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V_{2}}+\sum_{j=3}^{J} e^{V_{j}}}-\frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V 1}+e^{V_{2}}+\sum_{j=3}^{J} e^{V_{j}}} \tag{17}
\end{equation*}
$$

This is equivalent $\|^{1}$ to Ophem, Stam et al. (1999, pg.120) derivation.

$$
\begin{equation*}
P_{q, k, s}=1-\frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V_{1}}+\sum_{j=3}^{J} e^{V_{j}}}-\frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V_{2}}+\sum_{j=3}^{J} e^{V_{j}}}+\frac{\sum_{j=3}^{J} e^{V_{j}}}{e^{V 1}+e^{V_{2}}+\sum_{j=3}^{J} e^{V_{j}}} \tag{18}
\end{equation*}
$$

[^0]
1.3.1 Single choice made

In this case, our equation of interest also becomes logistically distributed:

$$
\begin{align*}
P\left(\max _{j=2, \ldots, 15} U_{j} \leq U_{1}\right) & =\frac{1}{1+\exp \left(V_{1}-\ln \sum_{j=2}^{J} e^{V_{j}}\right)} \\
& =\frac{\sum_{j=2}^{J} e^{V_{j}}}{e^{V_{1}}+\sum_{j=2}^{J} e^{V_{j}}} \tag{6}
\end{align*}
$$

1.4 The likelihood function

Assume the deterministic part of utility V_{j} is a linear function of the parameters to be estimated $V_{j}=X^{\prime} \beta_{j}$, where X is a k vector of attributes, and β_{j} is a k vector of parameters.

To write down the likelihood function, we need to construct dummy variables, $d_{i, j}$ of $S=\binom{M-2}{2}$ combinations of responses: the set is $M-2$ as Don't Know and None are single choice options. Indicators s, t map to the specific combination in S.

The likelihood function is therefore:

$$
\begin{align*}
L\left(y_{i} \mid x_{i} ; \beta\right)= & \prod^{N} f\left(y_{i} \mid X ; \beta\right) \\
= & \prod^{N}\left[\prod_{s, t}^{S}\left(1-\frac{\sum_{j \neq s, t} e^{V_{j}}}{e^{V_{s}}+\sum_{j \neq s, t} e^{V_{j}}}-\frac{\sum_{j \neq s, t} e^{V_{j}}}{e^{V_{t}}+\sum_{j \neq s, t} e^{V_{j}}}+\frac{\sum_{j \neq s, t} e^{V_{j}}}{e^{V_{s}}+e^{V_{t}}+\sum_{j \neq s, t} e^{V_{j}}}\right)^{d_{s, t}}\right. \\
& \left.\cdot \prod_{s=M-1}^{M}\left(\frac{\sum_{j \neq s} e^{V_{j}}}{e^{V_{s}}+\sum_{j \neq s} e^{V_{j}}}\right)^{d_{s}}\right] \\
= & \prod^{N}\left[\prod_{s, t}^{S}\left(1-\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{s}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}-\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}+\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}\right)\right.
\end{align*}
$$

1.4.1 Using dual choices only

In this case, we use only the subset of the data in which each agent chooses two options. Call the number of observations in this subset N_{d}, and the number of optons D. Therefore, $S_{d}=\binom{D}{2}$.

$$
\begin{equation*}
L\left(y_{i} \mid x_{i} ; \beta\right)=\prod^{N_{d}}\left[\prod_{s, t}^{S_{d}}\left(1-\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{s}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}-\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}+\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}\right)^{d_{s, t}}\right] \tag{20}
\end{equation*}
$$

1.5 Maximum Likelihood Estimation

Using the dual choice model (equation ??):

$$
\begin{aligned}
& \hat{\beta}=\underset{\beta}{\arg \max } L\left(y_{i} \mid x_{i} ; \beta\right) \\
& =\underset{\beta}{\arg \max } \ln L\left(y_{i} \mid x_{i} ; \beta\right)
\end{aligned}
$$

$$
\begin{align*}
& =\sum^{N_{d}} \sum_{s, t}^{S_{d}} d_{s, t} \cdot \ln \left[1-\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{s}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}-\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}+\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{s}^{\prime} \beta_{j}}+e^{X} X_{t}^{\prime \beta_{j}}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}\right] \tag{21}
\end{align*}
$$

1.6 Jacobian and Hessian

$$
\left.\left.\begin{array}{l}
\sum^{N_{d}} \sum_{s, t}^{S_{d}} d_{s, t} \cdot \ln \left[1-\frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{s}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}-\frac{\sum_{j \neq s, t}}{e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t}^{X_{j}^{\prime} \beta_{j}}} e^{X_{j}^{\prime} \beta_{j}}\right.
\end{array} \frac{\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}\right]\right] . \quad \begin{aligned}
& \sum_{s, t}^{N_{d}} \sum_{j \neq s, t}^{S_{d}} d_{s, t} \cdot \ln \left[1-\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}} \cdot\left[\frac{1}{e^{X_{s}^{\prime} \beta_{j}}+\sum_{j \neq s, t}^{X_{j}^{\prime} \beta_{j}}}-\frac{1}{e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}+\frac{e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{}\right]\right]
\end{aligned}
$$

The interior summation can just be seen as an indicator function, $I(s, t \in$ choice $)$ - it only turns on the expression when the agent n picks the selection s, t - i.e. it is only true once for each agent. This means it can essentially be ignored in practice.

1.6.1 Jacobian

The derivative with respect to a specific scalar β_{s} and X_{s} is as follows. We only need the derivative from the respect of a β_{s} as only in the case that the β_{i} is β_{s} or β_{t} does this contribute any value to the Jacobian.

I need to check this result with a vector B_{s}
For example, consider the derivative of $\beta_{i}, i \neq s . d_{s, t}$ in this case is 0 , so the whole contribution to the summation can be ignored.

$$
\begin{align*}
\frac{\partial \mathcal{L}}{\partial \beta_{s}^{\prime}} & \left.=\sum^{N_{d}} \sum_{s, t}^{S_{d}} d_{s, t} \cdot-\frac{X_{s}^{\prime} \cdot e^{X_{s}^{\prime} \beta_{j}} \cdot \sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}} \cdot\left(\frac{1}{\left(e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}\right)^{2}}-\frac{1}{\left(e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}\right)^{2}}\right)}{1-\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}} \cdot\left(\frac{1}{e^{X_{s}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}-\frac{1}{e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}+\frac{1}{e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}\right.}\right) \\
& =\sum^{N_{d}^{\prime} \cdot e^{X_{s}^{\prime} \beta_{j}} \cdot \sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}} \cdot\left(\frac{\left.(\cdot)-\frac{1}{\left(e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}\right)^{2}}-\frac{1}{\left(e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}\right)^{2}}\right)}{1-\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}} \cdot\left(\frac{1}{e^{X_{s}^{\prime} \beta_{j}}+\sum_{j \neq s, t}^{X^{\prime} \beta_{j}}}-\frac{1}{e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}+\frac{e^{X_{s}^{\prime} \beta_{j}}+e^{X_{t}^{\prime} \beta_{j}}+\sum_{j \neq s, t} e^{X_{j}^{\prime} \beta_{j}}}{}\right.}\right.} . \tag{23}
\end{align*}
$$

References

Ben-Akiva, M. E., Lerman, S. R. and Lerman, S. R. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand, volume 9. MIT Press.

Cameron, A. C. and Trivedi, P. K. (2005). Microeconometrics: Methods and Applications. Cambridge University Press.

McFadden, D. (1974). The Measurement of Urban Travel Demand. Journal of Public Economics, 3(4), 303-328.

Ophem, H. V., Stam, P. and Praag, B. V. (1999). Multichoice Logit: Modeling Incomplete Preference Rankings of Classical Concerts. Journal of Business \& Economic Statistics, 17(1), 117-128.

[^0]: ${ }^{1} 1$ minus, I need to understand why

